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ABSTRACT

The application of analysis lattice filters to the

problem of determining the input to a system from

observations of the system's output (i.e., deconvolution ) is

discussed. Both linear and nonlinear systems are

considered. Lattice filter modeling algorithms (Levinson

and Schur) are presented.

The theory of least-squares inverse filters is reviewed.

This leads to a discussion of the lattice filter, which in

turn leads to the Generalized Lattice Theory. The

Generalized Lattice Theory is then used to develop a

nonlinear lattice structure. Simulations show that the

nonlinear lattice is an effective inverse filter for both

linear and nonlinear systems.
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I. INTRODUCTION

T'he problem of estimating a signal based upon

observations of a related signal is one of the most

important operations in signal processing. The input and

output signals of a linear system are related by the

convolution operation

/:
-' — on

y(t) = h(t) * x(t) =J h(t-T)x(T)dT- (1.1)
•ea

where h(t) is a causal, linear time-invariant (LTI), system

impulse response. Since this thesis deals primarily with

discrete digital signals, continuous time signals are

sampled at uniform intervals, T, and are represented by

discrete sequences x(nT) = x(n) for n = 0,1,2,...,N.

Discrete convolution for a LTI system is defined by

n
y(n) = h(n) * x(n) = £ h(n-ra)x(m) (1.2)

m=-oo

and is shown in Figure 1.1. The basic deconvolution

problem is to estimate the signal x(n), assuming that both

y(n) and h(n) are known. Figure 1.2 depicts the inverse

filtering process of recovering the input signal from the

output signal by removing the system's impulse response.

Deconvolution has important applications in a variety

of fields: Radar, communications, image processing, speech
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synthesis, seismology. For example, in image processing,

deconvolution is used to recover the representation of the

original object, x(m,n), from the representation of its

image, y(m,n), by removing the blurring caused by the opti-

cal system's point-spread function, h(m,n). A common

problem which arises in geophysics involves the deconvolu-

tion of a seismic trace, y(n), into the approximately known

impulsive waveform, h(n), and the desired reflection

response, x(n), which reveals the structure of the layered

Earth. In other applications, h(n) may represent the

impulse response of a transmission channel, magnetic

recording medium, or measurement device which broadens and

smears ( intersymbol interference) the desired message x(n).

There have been numerous approaches to the linear

deconvolution problem, including least-squares filtering,

linear inverse theory, linear programming, and homomorphic

signal processing. The first part of this thesis deals with

least-squares filtering techniques; the application of

Kalman, waveshaping, and lattice filters to deconvolution is

reviewed. Next, the lattice filter discussion is extended

to the theory of the generalized lattice filter. Finally,

nonlinear system theory is briefly reviewed, and the

nonlinear lattice filter is developed and applied to the

inverse filtering problem. Computer simulation results for

both the linear and nonlinear lattice filters are presented.



www.manaraa.com

II. LINEAR LEAST-SQUARES DECONVOLUTION TECHNIQUES

A. INTRODUCTION

This chapter begins with a discussion of the principles

of least-squares filtering theory since deconvolution is

essentially an inverse filtering process. Three specific

types of least-squares filters are then introduced: Kalraan,

waveshaping, and lattice filters. The application of each

of these three filter types to the problem of linear decon-

volution is studied. Finally, the chapter concludes with

the presentation of computer simulation results obtained for

deconvolution experiments using the lattice filter.

The goal of deconvolution is to recover the input

signal, x(n), to a system based upon observed values of the

system's output signal y(n). An optimal processor must be

determined to produce the best possible estimate of x(n)

based upon present and past values of the output y(n). A

traditional measure for defining the "best" signal processor

is the minimum mean-squared error criterion. Using this

criterion, the estimate x(n) is defined by a linear

combination of the observed values y(n). Assuming

causality, and that the observed signal is windowed to

include only the M past samples, x(n) is written as

10
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A n
x(n) = Y h(n,i)y(i) , n >_ (2.1)

i=n-M

where h(n,i) = for n < i. The estimation error is given by

e(n) = x(n) - x(n). To find the optimum signal processor,

the h(n,i) coefficients which minimize the mean-square

estimation error J, where

2 ^2
J = E[e (n)] = E[(x(n) - x(n)) ] , (2.2)

must be determined. This is known as the Wiener filter

formulation of the problem. [Ref. 1
: pp . 113,116]

The least-squares theory of filtering began in the

1940's with the work of Norbert WIENER [Ref. 2:pp. 147-148].

WIENER developed a frequency domain procedure to design

optimum filters, where optimality was defined by minimizing

a mean-square error performance criterion. The Wiener

filter is conventionally applied to linear time-invariant

systems with stationary statistics when it is desired to

separate one signal from another. In the early 1950's, the

Wiener filter was extended to include time varying and

nonstationary statistics, but the calculations are

cumbersome [Ref. 3:p. 1].

The mean-square estimation error J(n) is minimized by

setting its partial derivatives, with respect to each of the

filter coefficients h(n,i), equal to zero. Thus:

11
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r)J(n)
= (2.3)

0h(n,i)

for i = n-M,n-M+l , . . . , n. This yields a set of M+l linear

simultaneous equations, called the orthogonality equations

where

R (n,i) = E[e(n)y(i) ] = (2.4)
ey

for n-M <. i <_ n and n >_ 0. R (n,i) is the
ey

crosscorrelation function between the error signal, e(n),

and the data y(n). Substituting e(n) = x(n) - x(n) into the

orthogonality equations gives the normal , or Wiener-Hopf

equations

:

n
E[x(n)y(i)] = Y h ( n , k)E[y ( k ) y ( i )

]

(2.5a)
k =n-M

or

n
R (n,i) = £ h(n,k)R (k,i) . (2.5b)
xy k=n-M yy

Since the autocorrelation function R of the input signal
yy

and the crosscorrelation function R of the desired output
xy

signal with the input signal are known quantities, the M+l

equations can be solved for the optimal filter weights

h(n,i), i=n-M,...,n. If data vectors are defined so that

T
x(n) = [x(n-M), x ( n-M+1 ),..., x ( n )

]

(2.6a)

12



www.manaraa.com

and

y_(n) = [y(n-M), y ( n-M+1 ),..., y( n )

]

(2.6b)

then the M+l Wiener-Hopf equations can be written as

T T
E[x(n)y (n)] = hE[y_(n)y (n) ] (2.7)

where h = [h(n,n-M), h( n-M+1 ),..., h ( n , n )] . Assuming that

the signals x(n) and y(n) are stationary, then the filter

coefficients are time-invariant and h(n,k) = h(n-k); and

equation (2.7) can be written in matrix form as

Ryy(O) Ryy(l) Ryy(2)
Ryy(l) Ryy(O) Ryy(l)
Ryy(2) Ryy(l) Ryy(O)

Ryy(M)

Ryy(M

Ryy ( )

h(0) — ,

h(l)
h(2) =

•

h(M)

Rxy(O)
Rxy(l)
Rxy(2)

Rxy(M)

(2.8)

Now, the optimal coefficients can be solved by inverting

the autocorrelation matrix, or by exploiting the matrix's

Toeplitz structure (all elements are the same on any given

diagonal) to employ the more efficient Levinson algorithm.

(Levinson's algorithm will be discussed in the development

of the analysis lattice filter.)

The minimized value of the mean-square estimation error

can now be computed, and is found to be

2 n
J (n) = E[x (n)] - Y h(n,i)E[y(i)x(n)

]

i =n-M
(2.9)

mm

13
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T T -1
= R (0)-E[x(n)y_ (n) ]E[y_(n)y_ (n)] E[£(n)x(n)]

xx

[Ref. 4:p. 148]. These values correspond to the diagonal

elements of the covariance matrix of the estimation error,

T
R = E[e(n)e (n)

]

(2. 10)

ee

A
where e(n) = x(n) - x(n) [Ref. l:p. 120]. Furthermore, the

estimate of x(n) is given by

a T T -1
x(n) = E[x(n)y_ (n)]E[y(n)y_ (n)] y_(n) (2.11)

= hy(n)

This estimate can be thought of as the projection of the

desired signal x(n) onto the space spanned by the components

of the observation vector y(n). The minimized estimation

error vector is orthogonal, or normal, to the estimate

x(n). [Ref. 4:p. 147]

This completes the overview of least-squares filtering.

The following sections present several linear deconvolution

techniques which employ this criterion: Kalman filtering,

spiking filters, and lattice filters.

B. KALMAN FILTER

In the early 1960 's, R.E. KALMAN introduced an optimal

recursive filter based on state-space time-domain methods

[Ref. 2:pp. 267-268]. The Kalman filter estimates the state

14
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of a linear system, and is optimal in the sense that it min-

imizes the mean-square error of the state estimate. The

Kalman filter is useful when the system is defined by state

space equations: The system signals are represented by

random processes, and the data observations are

contaminated by noise. The Kalman filter algorithm processes

measurement data, and requires a priori state space models

(known or assumed) of the system and measurement dynamics.

Also, the statistics of the system input and measurement

noises, as well as initial condition information, are

required to produce the state estimate. This process is

depicted in Figure 2.1. Here, the discrete Kalman filter

equations will be presented, and then their application to

deconvolution will be described.

The state space representation of the discrete system

and measurement models (see Figure 2.2) are written as [Ref.

2:pp. 195-200]

:

x(k) = F(k-l)x(k-l) + w(k-l) (2.12)

z(k) = H(k)x(k) + v(k) (2.13)

where

x(k) = (n x 1) system state vector

F(k) = (n x n) transition matrix

w(k) = (n x 1) system noise vector

z(k) = (m x 1) measurement vector

15
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H(k) = (m x n) observation matrix

v(k) = (m x 1) measurement noise vector.

(Note that the time index k is used here to be consistent

with the discrete Kalman filter literature.)

The noise vectors w(k) and v(k) are assumed to have zero

j

J mean, white, Gaussian distributions with covariance matrices
. T T

I
of Q(k) = E[w(k)w (k)] and R(k) = E[v(k)v (k)],

respectively. Additionally, w and v are uncorrelated so
] T

\
that E[w(k)v (j)] = for all k and

.
j . The state estimation

J error is defined by
>

j

• e(k|k-l) = x(k) - x(k|k-l) (2.14)

and the associated (n x n) error covariance matrix is

T
P(k|k-1) = E[e(k|k-l)e (k|k-l)]. (2.15)

An updated, a posteriori estimate of x(k) is obtained from

the measurement z(k) and the a priori state estimate

x(kik-l) by

x(k) = x(k|k-l) + K(k) [ z ( k ) -H( k )x ( k I k-1 ) ] (2.16)

where K(k) is the (n x m) Kalman gain matrix. The a

posteriori error is given by

e(k) = x(k) - x(k) (2.17)

and the associated a posteriori error covariance matrix is

18
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T
P(k) = E[e(k)e (k)]

.

(2.18)

The mean-square estimation error criterion is minimized

when

T T -1

K(k)=P(k|k-l)H (k) [H(k)P(k|k-l)H (k)+ R(k)] (2.19)

This optimal value of the Kalman gain matrix minimizes the

individual terms along the main diagonal of P(k).

Substituting the optimal gain matrix K(k) into the

expression for P(k) results in

P(k) = (I_ - K(k)H(k) ) P(klk-l) , (2.20)

where J_ is the identity matrix. In order to compute

equations (2.16) and (2.19) recursively, the a priori

estimates x(k+l|k) and P(k+l|k) must be determined at time

k. The a priori estimates are given by

x(k+l|k) = F(k)x(k) (2.21)

T
P(k+l|k) = E[e(k+l|k)e (k+l|k)] (2.22)

T
= E[F(k)e(k)+w(k) ) (F(k)e(k)+w(k) ) ]

T
= F(k)P(k)F (k) + Q(k) .

The Kalman filter algorithm is implemented by recursive-

ly computing equations (2.16), (2.19), (2.20), (2.21), and

(2.22). Figure 2.3 is a diagram of the Kalman filter. The

19
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Figure 2.3 Discrete Kalman Filter

20
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algorithm is initiated with the initial conditions

x(0) = E[x(0)

]

(2.23a

and,

T
P(0) = E[(x(0)-x(0) )(x(0)-x(0) ) ]. (2.23b)

In the event that a controlling input or a deterministic

disturbance u(k) is applied to the system, the only change

in the above algorithm is the state model and the a poster-

iori estimate. They become [Ref. 5:p. 130]

x(k) = F(k-l)x(k-l) + w(k-l) + G(k-l)u(k-l) (2.24)

x(k) = F(k-l)x(k-l)+G(k-l)u(k-l) (2.25)

+K(k) [z(k)-H(k)F(k-l)x(k-l) ]

.

where G(k) is a (n x q) matrix and u(k) is a (q x 1) vector

of input signals.

The problem of estimating a desired signal based on

noisy data observations pertains to such fields as

communications, controls, and geophysics. However, the

Kalman filter can also be applied to these deconvolution

problems. As an example, the discrete Kalman inverse filter

will now be applied to an exploration seismology problem.

Typically, in the search for underground oil and gas

deposits , a vibratory signal source generates a pulse of

energy which is transmitted into the earth. In modern

21
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seismology, the shape of this source wavelet can be

carefully controlled; it is chosen so that it contains only

those frequencies which are transmitted best by the earth.

As the source wavelet propagates through the earth, it

encounters many different layers with various acoustic

impedances. At these layers, both partial reflection and

refraction occur, creating numerous transmission paths. The

received seismic signal at the surface is composed of many

overlapping reflected wavelets. Therefore, the seismic

trace can be represented as the convolution of the original

source wavelet with an impulse train representing the

various layers of the earth. Moreover, the seismic trace is

contaminated by measurement noise and by the phenomena of

ghost reflections and reverberations. [Ref. 6:pp. 14-15]

The seismic trace can be described mathematically by

z(t) = s(t,T)*r(t) + v(t) = / s(t,T)r(T)dT + v(t) (2.26)
J t

where z(t) = measured seismic trace

s(t,T) = finite duration, time varying wavelet

r(t) = reflectivity function of earth's structure

v(t) = measurement noise.

The seismologist must extract the structure of the earth,

r(t), by analyzing the noisy seismic data z(t). This

process of removing the wavelet shape from the trace and

leaving behind the impulse train representing the reflected

22
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wavelet's strength and arrival time is that of

deconvolution. CRUMP [Ref. 3:pp. 6-7] shows that if the

seismic signal is sampled at discrete, uniformly spaced

intervals, and if s(t,T) and r(t) are assumed to be causal,

then z(t) is represented by

J
z(k) = Y [s(k,k-i+l )r(k-i+l > ] + v(k) (2.27)

i = l

where the sample number k = 1,2,3,..., and

L = length of the wavelet given in number of samples

J = k for k<L

= L for k>_L .

When M traces of K samples in length are available for

processing then z(k) becomes a (M x 1) vector where the j-th

component is given by

J
z (k) =

Y, t H (k) )r(k-i + l ) ] + v (k) (2.28)
J i=l ji J

for j = 1,2, ... ,M and k = 1,2,...,K. This assumes that the

reflectivity function is the same for each trace, while the

shape of the exciting wavelet may vary from trace to trace.

The time-varying wavelet values are contained in the (M x L)

matrix H(k) where the j-th row contains the L samples of the

wavelet which generates the j-th trace:

H (k) = s (k,k-i+l ) . (2.29)
ji J

In vector form, the equations become

23
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z(k) = H(k)x(k) + v(k) (2.30)

where the state, measurement, and noise vectors are given by

T
x(k) = [r(k) ,r(k-l) , . . . ,r(k-L+l)

]

T
z(k) = [z (k),z (k) , . . . ,z (k)]12 M

T
v(k) = [v (k) ,v (k) , . . . ,v (k)] .12 M .

(2.31a)

(2.31b)

(2.31c)

This is the Kalman filter measurement model. Now the state

model must be determined.

The state model is arrived at by assuming a general

relationship for the reflection coefficients of x(k). The

assumed relationship is the autoregressive equation

r(k) = V [b (k-l)r(k-i)] + w(k-l) .

i = l i

(2.32)

Comparing equation (2.32) with the state vector x ( k ) yields

the state model

x(k) = F(k,k-l)x(k-l) + w(k-l) (2.33)

where the (M x L) transition matrix and the (M x 1) system

noise vector are given by

F(k,k-1) =

b (k-1) b (k-1)
1 2

b (k-1)
L

(2.34a)

24



www.manaraa.com

T
w(k-l) = [w(k-l) ,0,0, . . . ,0] , (2.34b)

X is the identity matrix, and is the null vector.

Equations (2.30) and (2.32) provide the measurement and

system models for implementing the deconvolution via the

Kalman filter. CRUMP discusses methods by which to obtain

numerical values for the reflection coefficient vector b(k)

and the time-varying wavelet sample matrix H(k) [Ref. 3
: pp

8-11]. Once these matrices are determined, the recursive

Kalman filter removes the effects of s(t,T) from r(t) and

generates the state estimate x(k) which provides L samples

of the desired reflectivity function at each time k.

It is interesting to note that both the Kalman and

Wiener filters are minimum mean-square error estimators,

both require the same a priori knowledge of the process to

be estimated, and that both yield identical estimates.

However, the Kalman filter does have distinct advantages

over the Wiener filter. First, due to the matrix form of

the state space equations, the Kalman filter has

multichannel capability and is equivalent to a bank of

optimal estimators. Moreover, the Kalman filter is ideally

suited to computer implementation due to its discrete and

recursive characteristics. [Ref.2:pp. 268-269]

The discrete least-squares approach which follows is a

viable alternative to the Kalman filter algorithm,
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particularly when state space model equations are not

available or applicable.

C. LEAST-SQUARES INVERSE FILTER

When a linear system, H(z), is excited by the an input

signal x(n) , the output y(n) is defined by the convolution

relationship y(n) = x(n) * h(n). Deconvolution involves

finding the inverse filter G(z) such that H(z)G(z) = 1.

(Note that the discrete time domain is related to the fre-
jwT

quency domain through the equation z = e , where T is

the discrete sampling interval.) This condition transforms

to h(n) * g(n) = d(n) in the discrete time domain; h(n) and

g(n) are the impulse responses of the filters H(z) and G(z),

respectively, and d(n) is the unit impulse function. If

this condition is met, then the original input signal x(n)

is recovered at the output of the inverse filter.

The transfer function of the causal system is defined by

the infinite series obtained by taking the one-sided z-

transform of the system's impulse response:

2 -i
H(z) = Y(z)/X(z) = 2L Mi)z . (2.35)

i =

H(z) can be determined by inserting a known sequence x(n)

into the system, measuring the output sequence y(n), and

then manipulating their z-transforms . The inverse filter

G(z) is then computed by carrying out the polynomial

division
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-1 -2
G(z) = 1/H(z) = l/[h(0)+h( l)z +h(2)z +...] (2.36)

-1 -2 -M
= g(0) + g(l)z + g(2)z + ... + g(M)z + ...

and truncating to M+l terms if necessary. If the exact

inverse filter is approximated by truncating G(z) to order

M, then its impulse reponse is given by the sequence g(n),

n = , 1 , 2 , . . . , M. Furthermore, if the original system's

impulse response is represented by h(n), n=0 , 1 , 2 , . . . N, then

M
d(n) = g(n) * h(n) = V g(m)h(n-M) (2.37)

m =

for <^ n <_ N+M. This approximation to the impulse function

improves as the order M of the inverse filter is increased.

Now the stability of the inverse filter will be

addressed. If H(z) has all its zeros inside the unit circle

in the complex z-plane, it is referred to as a minimum-delay

polynomial; the corresponding sequence h(n) is called a

minimum phase-lag sequence. This is a sufficient condition

to guarantee that H(z) has a stable inverse, because the

zeros of H(z) become the poles of G(z), and G(z) is a stable

filter if all its poles lie within the unit circle.

Maximum- and mixed-delay signals are obtained by

transforming the zeros of H(z) from z to 1/z where the
i i

superscript '*' represents the complex conjugate operation.

A maximum-delay sequence has all of its zeros outside the
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unit circle, while the mixed-delay sequence has zeros inside

and outside the unit circle.

If H(z) has N zeros, then transforming these zeros
N

results in at most 2 distinct sequences. Of note, each of

these minimum, maximum, and mixed-delay signals have the
2 *

same magnitude spectrum: |H(w)| = H(w)H (w) [Ref. l:p. 98].

However, they do have distinct phase spectra [Ref. 4:p.

175]. The maximum-delay polynomial can be written as

R * * -1 * -N
H (z) = h (N) + h (N-l)z +...+ h (0)z (2.38)

R
The so called reverse polynomial H (z) is a conjugated,

reflected, and shifted version of H(z). The corresponding
R * * *

maximum phase-lag sequence is h = {h (N),h (N-l ),..., h (0)}

[Ref. 6:p. 72] While the minimum-delay filter has a causal,

stable inverse consisting only of a memory function, the

maximum-delay filter has an inverse which consists only of a

stable, noncausal , anticipation function. The stable

inverse of a mixed-delay function consists of both memory

and anticipation functions. Filters with nonvanishing

anticipation components are noncausal; they cannot work in

real time since the future values of the filter input are

not available for processing. This problem can be

circumvented if the entire signal is first recorded prior to

analysis; then the required future input data is available.

[Ref. 4:p. 87]

28



www.manaraa.com

The energy distribution in minimum, mixed, and maximum

delay signals will now be examined. Since each of these

signals have an identical magnitude spectrum, they also

have the same total energy. However, although the total

energy is the same, the rate at which the energy builds up

differs for the various sequences. Parseval's theorem

states that the total energy in a signal is given by

L
* 2 M 2

|H(w)| dw/(2n) = £ Ih(m)| . (2.39)

-tr m=0

If the partial energy is defined as

n 2

P(n) = V |h(m) I , (2.40)
m =

then it can be shown that the energy builds up quickest in

the minimum-delay sequence, and that it builds up the

slowest in the maximum-delay sequence [Ref. 6:pp. 75-76]. In

other words, the minimum-delay signal makes its impact as

soon as possible since its energy is concentrated at the

front of the sequence. The maximum-delay signal makes its

major impact at a later time since its energy is

concentrated at the end of the sequence. The energy curves

associated with all the possible mixed-delay signals lie

between these two extremes. Finally, it can be shown that

the convolution of two minimum-delay sequences with one

another results in a minimum-delay sequence. The convolution

of maximum-delay signals results in a maximum-delay
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sequence. Convolution involving any other combination of

sequences results in a mixed-delay sequence. Of note, the

resulting maximum and minimum-delay sequences are the

reverse of each other. [Ref. 6
: pp . 73-74]

The method described above of finding an approximate,

finite length inverse filter consisted of simply truncating

the exact inverse filter found by polynomial division. It

was seen that the inverse filter G(z) attempted to transform

the impulse response of H(z) into a unit impulse located at

the origin. This can be thought of as an attempt by G(z) to

undo the blurring effect of H(z) (i.e., H(z) "blurs" the

impulse d(n) into the impulse response h(n)). If the input

to H(z) is designated x(n), and. if the output of G(z) is

x(n), then the error of the approximated inverse filter is

e(n) = x(n) - x(n) for < n < N+M. (2.41)

The error energy is defined by

N+M 2

J = V e (n) (2.42)
n =

For the polynomial division / truncation method, J decreases

as the order M of G(z) increases [Ref. 6:p. 136]. Seeking to

minimize the error energy J with respect to the inverse

filter coefficients leads to another approach for finding an

approximate inverse filter.

.M
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Filters which minimize the mean-square error J are

called least error energy or least-squares inverses. In

general, the desired output sequence x(n) of the inverse

filter G(z) could be of any shape. G(z) is then called a

waveshaping filter. When applied to deconvolution, the

desired output of the inverse filter is a unit impulse

d(n-i), where i = , 1 , 2 , . . . ,N+M defines the lag of the digi-

tal inverse filter. In this case, G(z) is called an i-th

delay spiking filter since it tries to condense the system

impulse response h(n) into a spike with i delays. Since i =

, 1 , 2 , . . . , N+M, there are N+M+l possible spiking filters. As

will be discussed, there are preferred values of the lag i

for minimizing J, depending on the phase characteristics of

h(n). The spiking filter problem is shown in Figure 2.4.

It is convenient to restate the deconvolution problem in

a matrix form based on the Yule-Walker, or autocorrelation,

method [Ref. l:pp. 243-245]. This is accomplished by

defining the (M+N+l x M+l) system output matrix Y, the

(M+l x 1) impulse response vector £, and the (N+M+l x 1)

input vector x as follows:
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Y =

<-- - M Z ERC)S >

y(0)
yd)
y(2)

y(0)
yd) y(0)

•

•

•

y(N) y(N-
y(N)

l) y(N-
y(N-
y(N)

2)
1)

... y(N-M)

•

y(N)

(2.43a)

g_ = [g(0) , g(l)

,

,g(M)] (2.43b)

x = [x(0) , x(l) , ... ,x(N+M)] (2.43c)

The above notation is for the general case of the

waveshaping filter. For the special case of the spiking

filter, . the y(n) components of the system output matrix Y

are replaced by the impulse response h(n). Also, the

desired signal x reduces to an impulse d(n-i). Now

equations (2.37), (2.41), and (2.42) can be rewritten as

x = Yg.

e = x - x , and

J = e e

(2.44a)

(2.44b)

(2.44c)

As discussed in the introduction to this chapter, the

least-squares criterion is satisfied by minimizing J with

respect to the inverse filter coefficients G. This results

in the normal equations
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T T
Y Yg_ = Y x (2.45)

T
which can be solved for g_. By recognizing that Y Y is

equivalent to the (M+l x M+l) sampled autocorrelation matrix
T

R = E[y_£ ] where the M+l length data vector is y_ = [ y(0),
T T

y( 1 ) , . .
.
,y(N) ,0,0, . . .0] , and that Y x is a length (M+l)

cross-correlation column vector r, it can be seen that

T -1 T -1

£ = (Y Y) Y x = R r (2.46)

-1

where R can be evaluated efficiently by Levinson's

algorithm. The actual filter output is then

-1 T
x = Yg_=(YRY)x = Px (2.47)

T -1 T
where P = Y(Y Y) Y is a square (N+M+l) dimensioned matrix

called the projection or performance matrix. The filter's

performance improves as P approaches the identity matrix.

Now, the estimation error and cost function are written as

e = x - x = x(I - P) (2.48)

T T
J=ee=x(I- P)x (2.49)

Since in the deconvolution problem x is the spike with i

delays, the inverse filter output x is actually the i-th
-1 T

column of the P matrix. Also, since g_ = R Y , the

coefficients of the i-th spiking filter are contained in the
-1 T

i-th column of the matrix R Y . Moreover, the energy
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error of the i-th spiking filter reduces to J = 1 - P(i,i).

Therefore, in order to realize the best inverse function

(i.e., minimize J), select the delay i for which P(i,i) is

largest. For a chosen lag i, the filter's performance also

improves as the order M of the inverse filter is increased.

Now let J(i) represent the estimation error for the i-th

spiking filter. The grand sum of squared errors is defined

as V = J(0) + J(l) +...+ J(M+N). It can be shown that V =

(M+N+l) - (M+l) = N, where N is the order of the system H(z)

[Ref. 4:p. 198]. Therefore, V is independent of order M.

For sufficiently long spiking filters, the optimal value

of the delay i depends on the phase characteristics of the

signal h(n) and the choice of the lag is governed by the

following rules. If h(n) is a minimum-delay input, the

spiking filter should have zero delay, i = 0. This says

that for a signal with its energy concentrated towards the

front of the sequence, it is easiest to condense it to a

unit impulse at the origin. If the signal is a maximum-

delay input, the maximum-delay spike i = N+M+l should be

selected. If h(n) is a mixed-delay signal, then the i

corresponding to the largest P(i,i) should be chosen. [Ref

6.:p. 152]

Under certain conditions, the estimation error will go

to zero as the length of the inverse filter tends to

infinity. First, as previously discussed, if h(n) is a
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minimum-delay sequence then an exact inverse can be found

through polynomial division. The zero-delay spiking filter

approaches this exact inverse filter G(z) as the number of

terms M+l increases. Therefore, the estimation error goes

to zero as M goes to infinity. The second condition is, if

h(n) is not a minimum-delay sequence, J will approach zero

as 1/M if the lag i of the spiking filter is chosen to be

sufficiently large. [Ref.4:pp. 200-201]

Up until now, the effects of measurement noise and

imperfect knowledge of the distorting function H(z) have

been neglected. If noise is introduced, then the output

y(n) of the system H(z) driven by input signal x(n) becomes

y(n) = h(n)*x(n) + v(n) (2.50)

where v(n) is assumed to be zero-mean white noise with

variance Q. If this signal is passed through the previously

determined inverse filter G(z), the filter output becomes

x(n) = g(n)*y(n) = g ( n ) *h ( n ) *x ( n ) + g(n)*v(n) (2.51)

= d(n)*x(n) + u(n) = x(n) + u(n)

where u(n) = g(n)*v(n) is the filtered noise signal and d(n)

is the unit impulse function. The variance of u(n) is:

2 M 2 T
E[u (n)] = Q £ g (n) = Qg_ g. (2.52)

n =

[Ref. l:p. 248]. This variance may be larger than the
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original noise variance Q. For example, if h(n) is a low

frequencey signal, then g(n) must be very spiky in order to

compress h(n) into a high frequency content spike. As a

result, g(n) will likely have values greater than one.

Therefore, the variance of u(n) will be larger than Q. This

further degrades the estimate x(n).

To compensate for this filtered noise, the minimization

criterion is modified so that

N+M 2 T
J = £ (d(n) - g(n)*h(n)) + AQg. g_ (2.53)

n =

where A is a positive parameter. The first term of the cost

function tries to produce a good inverse filter whereas the

second term tries to reduce the output noise. If A is large,

noise reduction is emphasized at the expense of obtaining a

good inverse function. A small A emphasizes finding a good

inverse function g(n), and there is little output noise

reduction

.

Using this new cost function, the resulting normal

equations are given by

T T
(Y Y + AQI)g. = Y x . (2.54)

Comparing this with equation (2.45) reveals that the main

diagonal elements of the sampled autocorrelation matrix R

have been modified by an additive term: R(0) becomes R(0) +

AQ. If the Backus-Gilbert "prewhitening" parameter epsilon
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is introduced, where

£ = AQ/R(0) , (2.55)

then the diagonal elements are written as (1 +£ )R(0). Even

very small values for the BG parameter have a beneficial
T

effect of stabilizing the inverse of the matrix (Y Y + AQX)

•

[Ref. l:p. 246]

D. LATTICE FILTER

1

.

Introduction

The lattice filter is another optimal least-squares

predictor which can be applied to the linear deconvolution

problem. The lattice, or ladder filter derives its name

from the cascade form of its signal flow graph. Basically,

the lattice filter provides an alternative to the

transversal filter for modeling a signal. It can be viewed

as a Gram-Schmidt orthogonalization of the incoming data.

This will be elaborated upon in subsequent paragraphs. To

date, much of the work done with lattice filters has been in

the areas of speech analysis/synthesis, seismology, and in

high-resolution spectral estimation [Ref. 7:p. 841]. Prior

to developing the lattice filter equations, key mathematical

concepts which apply to this discussion will be reviewed.

2

.

Mathematical Background

A central concept behind the development of the

lattice filter is that of orthogonality. Two vectors are
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orthogonal if their inner product is zero. The geometric

interpretation of this is that the vectors are at right

angles to one another. As an example, if the random varia-

bles u and v are the basis vectors of a two-dimensional

space, they are orthogonal if and only if their inner

product <u,v> = E[uv] = 0. In the case where the linear

space is spanned by the random variables of a data vector,

two vectors are orthogonal if the corresponding random

variables are uncorrelated and if one or both have zero

mean [Ref . 8:p. 92]

.

A related theorem is the orthogonal decomposition

theorem, which states that any random variable may be

decomposed uniquely with respect to a subspace S into two

mutually orthogonal parts, one part which is parallel to S

(i.e., lies in S) and the other part orthogonal to S. That

,
A A

is, y_ can be written y_ = y_ + e where e is orthogonal to y_

and to the basis vectors which span the subspace S, and

where y_ is defined by a linear combination of the basis

vectors. If S is spanned by the basis vectors
MA r—

•

{u( 1 ), u( 2 ),..., u( M) } , then y = ) a(i)u(i) where it can be
i = l

shown that the coefficients are given by the equation
2 -1

a(i) = E[yu(i)]E[u (i)] . [Ref. l:p. 13]

The orthogonal projection theorem adds to this by

stating: the orthogonal projection y_ of a vector y onto a

linear subspace S is that vector in S which lies closest to
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y_ with respect to the distance induced by the inner product

of the vector space [Ref. l:p. 15]. Restated, this simply

means that y_ is the best estimate of y_ that can be made by a

linear combination of the basis vectors of S in a minimum

mean-squared error sense. Figure 2.5 shows the projection

of y_ into the subspace S

.

Another important concept in developing the lattice

filter is that of Gram-Schmidt orthogonalization . The Gram-

Schmidt procedure is a recursive orthogonalization process

which generates a set of mutually orthogonal basis vectors

{u ( 1 ), u ( 2 ),..., u ( M) } from a given set of basis vectors

{y ( 1 )» y( 2 ),..., y( M) } . The procedure is initialized by

letting u(l) = y(l). Next, y(2) is decomposed with respect

to u(l). That part of y(2) which is orthogonal to u(l)

becomes u(2). Next, y(3) is decomposed with respect to the

subspace spanned by (u(l),u(2)}. That part of y(3) which is

orthogonal to this subspace becomes u(3). In general, the

new set of orthogonal basis vectors is defined by

n-1
u(n) = y(n) - V b(n,i)u(i) (2.56)

i = l

2 -1

for 2 <_ n <_ M and where b(n,i) = E [ y ( n )u( i ) ]E [u (i)]

Using the orthogonal decomposition theorem, this is

equivalent to y(n) = y(n) + u(n) where y(n) is the best

estimate of the n-th component of the data vector based on

the previous n-1 components and u(n) represents the
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u

Figure 2.5 Projection of y onto Space S

41



www.manaraa.com

estimation error. If b(n,n) = 1 is introduced, then

n
y(n) = V b(n,i)u(i) for 1 < n <_ M.

This can be written in matrix form as

(2.57a)

y_ - Bu where (2.57b)

Z = [yd), y(2), .... y(M)]

u = [u(l) , u(2) , . .
. , u(M)]

B =

1

b(2, 1) 1

b(3, 1) b(3,2)

b(M,l) b(M,2)

This is a convenient notation for representing the

transformation from a set of correlated basis vectors y_ to

an uncorrelated set of basis vectors u. The bases y_ and u

span the same M-dimensional subspace S, but there are no

redundant correlations between the basis vectors of set u.

Since the basis of u is uncorrelated, its components u(i)

(i = 1,2,...,M) are referred to as innovations because each

additional component contributes completely new information

to the estimate of y_. [Ref. 1
: pp . 16-18]

Finally, the transformation y_ = Bu corresponds to a

LU (lower upper ) -Cholesky factorization of the correlation
T

matrix of y. By definition R = E[yy ]. Substituting for
yy
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jr results in

T T T
R = BE[uu ]B = BR B (2.58)
yy uu

T
where B is lower triangular, B upper triangular, and R is

uu
a diagonal matrix since the basis vectors u(i) are

uncorrelated with one another.

3 . Derivation of Lattice Filter Equations

Now the lattice filter order update equations will

be developed. A random signal y(n) can be modeled as the

output of a causal, stable, linear filter H(z) which is

driven by a stationary, uncorrelated, white noise sequence

{e( 1) ,e(2) , . .
. ,e(P) } [Ref. l:p. 30]. A P-th order

autoregressive model is defined by H(z) = 1/A (z) where
P

-1 -2 -P
A (z) = l+a(l)z +a(2)z +...+a(P)z . (2.59)
P

The filter A (z) has several names: prediction error filter,
P

inverse filter, or analysis filter. The signal y(n) can be

written as

P
y(n) = e(n) - T a(i)y(n-i) . (2.60)

1 = 1

If the predictor y(n) is introduced, this becomes

y(n) - y(n) = e(n) (2.61)

P
where y(n) = - > a(i)y(n-i). Now, y(n) is the estimate of

i = l

y(n) at time (n-1) based on the previous P samples, {y(n-P),
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y ( n-P+1 ) , . . . , y(n-l)} and e(n) is equivalent to the estima-

tion error. The estimate y(n) can be thought of as the

projection of the ( P+l ) -dimensional y(n) vector onto the P-

dimensional subspace spanned by the components of the data
T

vector Y = [y ( n-1 ), y( n-2 ),..., y( n-P ) ] . In general, the

past values of y(n) are correlated with one another. There-

fore, the random variable components of Y do not generally

form a set of mutually orthogonal basis vectors. The Gram-

Schmidt orthogonalization procedure removes these

correlations and transforms Y into a set of mutually

orthogonal basis vectors which span the same subspace.

Additionally, the predictor coefficients a(i) are replaced

by the reflection coefficients K . This results in the
i

lattice filter.

In order to obtain the optimal estimator, the

predictor coefficients which minimize the mean-squared
2

prediction error E[e (n)] must be determined. This problem

was discussed in the introduction to this chapter. The

resulting matrix form of the normal equations is

R(0) R( 1 ) R( 2)
R( 1 ) R(0) R( 1

)

R(2) R( 1 ) R(0)

R(P)

R(P)

R(0

1

a( 1 )

a(2)

a(P)

Ep

(2.62)

where R(k) = E [ y ( n+k ) y ( n ) ] and E is the minimized mean-
P

squared prediction error for the P-th order filter. The
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sample autocorrelation matrix components are calculated from

the length N data sequence by

N-l-k
R(k) = (1/N) V y(n+k)y(n) (2.63)

n =

for <_ k <_ P and where P <_ N-l. [Ref. l:p. 150]

Now there are P+l equations and P+l unknown model

parameters {a ( 1 ) , a( 2 ) , . . . , a( P ) ;E }. The P+l equations can be
P

solved by inverting the autocorrelation matrix. This
3 2

requires 0(P ) operations and 0(P ) storage locations. The

P+l equations can be solved more efficiently by taking

advantage of the matrix's Toeplitz structure by using

Levinson's algorithm. Levinson's algorithm reduces the
2

required number of operations and storage locations to CMP )

and CMP), respectively [Ref. 1
: pp . 150-151]. Being a

recursive procedure, Levinson's algorithm permits the

calculation of the (P+l)-st order model parameters by using

the previously determined P-th order model parameters. The

matrix form of the algorithm is given by
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a (1)
P+l

a (2)
P+l

a (P)
P+l

a (P+l)
P+l

1

a (1)
P

a (2)
P

a (P)
P

- K
P+l

a (P)
P

a (P-l)
P

a (1)
P

1

(2.64)

where

K

£ a (i)R(P+l-i)
i = P

P+l P
a (i)R(i)

i = P

(2.65)

The P subscript on the "a" parameters specifies the P-th

order prediction error filter A (z) whereas the index
P

identifies the appropriate term in the A (z) polynomial.
P

K is called the (P+l)-st order reflection or PARCOR
P+l
(partial correlation) coefficient.. The PARCOR coefficient

K represents the true, or direct, correlation between
P+l

y(n-P-l) and y(n) with the effects of the intermediate

variables (i.e., y ( n-P)
,
y(n-P+l ),..., y( n-1 ) ) removed. The

recursive form of Levinson's algorithm is written as

a (m)= a (m) - K a (P+l-m) for l<_m<P, (2.66a)
P+l P P+l P

and
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a (P+l) = -K for m=P+l. (2.66b)
P+l P+l

This shows that the reflection coefficient for each stage P

is equal to the highest coefficient of A (z). There is a
P

one-to-one correspondence between the PARCOR coefficients

and the coefficients of the transfer function A (z). The
P

transfer function or, equivalently , the autocorrelation
T

matrix R = E[y(n)y (n)] uniquely determine the reflection

coefficients [Ref. 7:p. 829]. Taking the z-transform of

equation (2.66) results in

A (z) = A (z) - K B (z) (2.67a)
P+l P P+l P

where

-1 -2 -P
A (z) =l+a (l)z +a (2)z + . . . +a (P)z , (2.67b)
P P P P

and

-P -1

B (z) = z A (z ) ,
(2.67c)

P P
-1 -2 -(P-l) -P

= a (P)+a (P-l)z +a (P-2)z + . . . +a (l)z +z
P P P P

Due to the effective folding about the axis and the shifting

to the right of the sequence A (z), the polynomial B (z) is
P P

called the reverse of A (z). Taking the reverse of both
P

sides of equation (2.67) yields

-1

B (z)=zB(z)-K A(z) (2.68)
P+l P P+l P
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Combining equations (2.67) and (2.68) into matrix form gives

A (z)
P+l

B (z)
P+l

-K
P+l

-1
-K z

P+l
-1

z

A (z)
P

B (z)
P

(2.69)

The forward prediction error associated with

predicting y(n) from the previous P samples {y ( n-P ) , . . . y (
n-

A
1)} is written as e (n) = y(n) - y (n) where the subscript P

P P
represents the filter order. In z-domain notation, this

becomes

E (z) = A (z)Y(z)
P P

(2.70)

Now, the backward prediction error r (n) is introduced. It
P

is defined as the error in predicting ( or actually

smoothing) y(n-P) from the future P samples {y ( n-P+1 , . . .
,

y(n)}. It is written as

r (n) = y(n-P)+a ( 1 ) y( n-P+1 )+... +a (P)y(n) (2.71a)
P P P

or in z-domain notation as

E (z) = B (z)Y(z)
P P

(2.71b)

The optimal backward predictor coefficients minimize the
2

mean-squared smoothing error E[r (n)]. Since the optimal
P

backward and forward predictor coefficients are mirror
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2 2

images of each other, then E[r (n)] = E[e (n)]. That is,

the backward and forward prediction error vectors have the

same norms [Ref. 8:p. 101].

As will be shown, at each instant n, the backward

prediction errors are mutually orthogonal (i.e., uncorre-

lated if assumed to be zero mean) [Ref. l:p. 170].

Therefore, it is the backward prediction errors,

r ( n ) ,
p=0 , 1 , . .

.
,M, where M is the filter order, which form

P
the new set of basis vectors. To demonstrate that the

backward prediction errors are mutually orthogonal, let M=3

and write the corresponding equations for P = 0,1,2,3 in

matrix form:

r (n)

r (n)
1

r (n)
2

r (n)
3

a ( 1) 1

1

a (2) a ( 1) 1

2 2

a (3) a (2) a (1)
3 3 3

y(n)

y(n-l)

y(n-2)

y(n-3)

(2.72a)

or

r(n) = Lyjn) (2.72b)

Note that the first column of L contains the negatives of

all the reflection coefficients. Now examine the covariance

matrix of r ( n )

:
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T T
R = E[r(n)r (n)] = E[L.£(n) (Lz(n) ) ] (2.73)
rr

T T T
= LE[y.(n)y. (n)]L = LR L .

yy

Since the normal equations are satisfied within the matrix

products above, R reduces to a diagonal matrix which
rr

verifies that the components of r ( n ) are uncorrelated. That

is

T
R = LR L = D = diag{E ,E ,E ,E } (2.74)
rr yy 12 3

where E is the minimum value of the mean-squared prediction
P 2

error which is given by E[e (n) •] . It can be shown that
2 P+l

E = ( 1-K )E where the recursion is initialized with
P+l P+l P 2

the value given by E = R (0) = E[y (n)] [Ref. 8:p. 105].
yy

Therefore, the prediction error decreases by a factor of
2

(1-K ) from one lattice stage to the next. Now, since the
P+l

elements of r(n) are uncorrelated, equation (2.72) is

equivalent to the Gram-Schmidt orthogonalization of the data

vector yjn). Also note that rewriting equation (2.74) as
-1 -T

R = L DL corresponds to a LU-Cholesky factorization of
yy

the covariance matrix of y(n).

To complete the derivation of the lattice recursion

equations, multiply both sides of equation (2.69) by Y(z) to

get
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E (z)
P+l

E (z)
P+l

-1
1 -K z E (z)

P+l P

K
-1

z E (z)
P+l P

(2.75)

These equations are transformed into -the time domain to

obtain the final result:

e (n) = e (n) - K r (n-1

)

P+l P P+l P

r (n) = r (n-1) - K e (n) .

P+l P P+l P

(2.76a)

(2.76b)

These equations, which are recursive in both time and order,

define the signal flow graph of the analysis lattice filter,

shown in Figure 2.6. For a given time instant n, the equa-

tions are evaluated recursively in order. The inputs into

the first stage of the lattice filter are e (n) = r (n) =

y(n). The successive stages of the filter develop the

successively higher order forward and backward prediction

errors. The output from the final stage yields the desired

M-th order forward prediction error, while all lower order

prediction errors are available at intermediate stages.

Since the backward errors are generated from the y_ data

vector, the analysis lattice filter actually implements

the Gram-Schmidt orthogonalization; all that is required to

implement the lattice are the reflection factors

{K ,K , . . . ,K } .

1 2 M
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Equation (2.76) can be manipulated to obtain the

lattice form of the synthesis filter H(z) = 1/A (z):
M

e (n) = e (n) + K r (n-1) (2.77a)
P P+l P+l P

r (n) = r (n-1) - K e (n) . (2.77b)
P+l P P+l P

Figure 2.7 shows the corresponding signal flow graph. When

the input to the synthesis filter is the forward prediction

error sequence e (n), the output is the original sequence
P

y(n). In order for the synthesis filter to be stable and

causal, all M zeros of the prediction-error filter A (z)
M

must lie within the unit circle in the complex z-plane. A

necessary and sufficient condition for all the zeros to be

inside the unit circle is that the magnitude of each of the

reflection coefficients {K ,K ,...,K } be less than one.
12 M

[Ref. l:pp. 168-169]

The reflection factors can be evaluated by several

methods. The various methods arise due to different

definitions of the optimality criterion. The criterion

used here of minimizing the mean-squared prediction errors

leads to what MAKHOUL calls the forward and backward methods

[Ref. 9]. They are, respectively:

2

K = E[e (n)r (n-1)] / E[r (n-1)] (2.78a)
P+l,e P P P

2

K = E[e (n)r (n-1)] / E[e (n)] . (2.78b)
P+l,r P P P
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2 2

Assuming stationarity , and since E[r (n) ] = E[e (n) ] as
P P

previously discussed, then the forward and backward

reflection coefficients are equal. That is K = K =

P+l P+l,e
K . The Schwarz inequality implies that ! K J <_ 1 for
P+l,r P
each P=1,2,...,M [Ref. 8:p. 104]. An alternate technique for

calculating the reflection coefficients is the geometric

mean method. It was introduced by ITAKURA and SAITO in

their work of developing a digital filter structure for

time-domain speech analysis [Ref. 10]. The corresponding

PARCOR coefficient is given by

E[e (n)r (n-1)]
P P

K = (2.79)
P+l 2 2 1/2

{E[e (n)]E[r (n-1)]}
P P

These PARCOR coefficients are guarenteed to have magnitudes

less than one [Ref. 7:p. 840].

A third method was used by BURG in the maximum-

entropy method of spectral estimation [Ref. 11]. This is

the harmonic-mean method. The harmonic-mean method seeks to

minimize the sum of the forward and backward prediction
2 2

error variances, E[e (n)] + E[r (n-1)]. Minimizing this
P P

sum with respect to the reflection coefficients results in
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2E[e (n)r (n-1)]
P P

K = (2.80)
P+l 2 2

E[e (n) + E[r (n-1 )

]

P p

Again, the Schwarz inequality verifies that K has magnitude
P

o less than one, guaranteeing that the synthesis filter is

J

£
causal and stable [Ref. l:p. 189],

u

4 . The Generalized (Analysis) Lattice Filter
z
iaJ

2 The preceding development of the analysis lattice

i
u filter equations assumed that the data sequence {y(n)}
>
D
13 represented a time sequence with stationary statistics. In

this section, a more general linear prediction problem
UJ

^
will be considered. No special assumptions are made

3 concerning the data. The data values need not be delayed
x

2 versions of each other; they need not even represent a time

sequence. This is the approach taken by LENK in developing

the generalized order update equations [Ref. 12:p. 85]. The

resulting generalized form of the lattice filter makes it

suitable for multidimensional and nonlinear signal

processing applications.

Definitions associated with the normalized form of

the generalized lattice filter will now be introduced.

First, the components of the length (M+l) column vector

[y ], representing a single realization of the random

process Y, are designated by y , A= 0,1,..., M. The forward

prediction error in estimating the (n+l)-st element from
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the previous N elements of the data vector is written as

N M N x
e = V h (n+1 )y ( 2.81

)

n+1 A=0 A

where the length (M+l) row vector of coefficients is

given by

N N N N
[h (n+l)]=[0, . . . ,0,-h ,-h , . . .

, -h , 1 , , . . . , ] . ( 2 . 82

)

* n-N+1 n-N+2 n

The backwards prediction error associated with predicting
n-N

y from the next N elements of the data vector is given by

N M ^N
A

r = Y h (n-N)y (2.83)
n-N A=0 A

where the associated coefficients are given by the vector

^N ^N N ^N
[h (n-N) ] = [0, . . .0, 1 ,-h ,-h , . . . , -Ti , , . . . , ] . ( 2 . 84 )

^ n-N+1 n-N+2 n

The norm of the forward prediction error is defined as

N N 2 1/2
I |e M = [E{(e ) }] . (2.85)

n+1 n+1

The norm of the backward prediction error is defined in a

similar manner. Now, the normalized forward and backward

N-th order prediction errors are defined by

N N N M N x
e = e /Me It = £ a (n+l)y

,
(2.86a)

n+1 n+1 n+1 ^=0 *

and

N N N M N X
= r / Mr || =

Y.
b (n-N)y (2.86b)r u ~y

n-N n-N n-N ^=0
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I

I

where the normalized prediction error coefficients are

defined as

N N N

a Jn+1) = h (n+1) /lie I I

A n+1X
(2.87a)

and

N ^N N
b (n-N) = h (n-N) / | |r II
A A n _N

(2.87b)

[Ref. 12:pp. 85-87]

Using the normalized form of the generalized

Levinson algorithm, LENK demonstrated that equations (2.87)

could be updated recursively through the relation

N+1
a . (n+1 )

N+1
b (n-N)
A

N+1

N
a (n+1)

N
b (n-N)

(2.88)

where the partial correlation ( PARCOR ) coefficient is

(2.89)
n N __N

K = E{e r }

N+1 n+1 n-N

and where

n

0<K )
=

N+1 n 2

1 - (K )

N+1

- K

n
- K

n

N+1

1

N+1

(2.90)

The recursion is started for order N=0 with the initial pre-

diction error values for A=0,1,...,M given by the vectors
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n+1
[a (n+1)] = [0.....0, l/l|y |» ,0,...,0] (2.91a)

n
[b (n)] = [0,...,0, 1/lly II, 0,...,0] . (2.91b)

Multiplying both sides of equation (2.90) by the data vector

[y ] yields the desired error order update equations:

N+1

n+1

N+1

n-N

n

N+1

N

n+1

N

n-N

(2.92)

The corresponding signal flow graph for a single lattice

filter section is shown in Figure 2.8. Figure 2.9 depicts a

third order generalized lattice filter. [Ref. 1 2
: pp . 94-99]

LENK then proved that the reflection coefficients

(i.e., PARCOR coefficients) could be calculated directly

from the data vector's correlation matrix by utilizing the

generalized Schur algorithm. In LENK's notation, the

components of the correlation matrix are written as R

E{y^ y }. Then the reflection coefficients are given by

r\

n
K
N+1

n-

a
N

N
(n+1)

n-

P̂ N

-N

(n-N)

(2.93)

where
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i i:

J

IS

;

I

O
J

:j

t

:j

I

and

X N X M N r
CX (n+l) = E{e y } = £a (n+l)R

N+l n+l p=0

\ N X M N pA.

/J (n-N) = E{" y } = V b (n-N)R .

*N+1 n-N n=0

(2.94a)

(2.94b)

Equations (2.94) can be updated through the recursion

relation

Of <
n+1 >

N+l

fl (n-N
^N+l

-N)

n
(K )

N+l

A
01 (n+l)

N

P (n-N)
^ N

(2.95)

To start the recursion at order N=0, the values of the

parameters for ,\=0,1,...,M are given by the vectors

n+l -1 (n+l)0 (n+l)l (n+l)M
\Oi (n+l)]=||y II [R ,R , . . . , R

X n -1 nO nl nM
[// (n)] = | |y II [R ,R , . . . ,R ]

^0

] (2.96a)

(2.96b)

[Ref. 12:pp. 100-101]

5 . Lattice Filter Advantages

The lattice filter has several advantages compared

to the direct, or transversal, form of the prediction error

filter A (z). First of all, due to the built-in
M

orthogonalization incorporated into the lattice, successive

lattice stages are decoupled. Therefore, the reflection
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coefficients K , P=1,2,...,M are independent of the filter's
P

final order. The M-th order least squares prediction filter

contains all the prediction error filters of lower order.

Restated, the first P sections of the M-th order filter form

the P-th order prediction filter. Therefore, lattice stages

may be added or subtracted from the existing lattice filter

without having to recalculate the already determined

reflection coefficients. In contrast, when the order of the

transversal filter is changed, all the A (z) prediction
M

error filter coefficients must be recalculated. As a

consequence, to specify all filter orders up to M requires

storage of M(M+l)/2 predictor coefficients, while only M

reflection coefficients need to be stored. [Ref. 7:p. 830]

Another advantage of the lattice over the

transversal filter is that the output of each lattice stage

is a least-squares prediction error. Therefore, if the

desired order of the predictor is not known in advance, the

output of the various stages can be monitored to determine

what filter order is adequate. [Ref. 8:p. 106]

Due to the quantization inherent in implementing

digital filters, round off noise is introduced.- Studies

have shown that the performance of the lattice filter is

far superior to that of transversl filters for finite word

length computations. Furthermore, the filter zeros are less

sensitive to quantization errors in the reflection
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coefficients than for quantization errors in the transversal

filter coefficients. Finally, since the magnitude of the

reflection coefficients is less than one, it simplifies the

task of establishing the quantizer overload point. [Ref.

8:p. 106]

Another advantage the lattice filter holds over the

transveral filter is that the lattice filter is minimum

phase (i.e., all its zeros are inside the unit circle so

that the synthesis model is stable) if and only if the

magnitude of the reflection coefficients is less than one.

There is no comparable test for the transversal filter

coefficients to determine whether the synthesis model is

stable. [Ref. 8:p. 106]

6 . Linear Lattice Filter Applied to Deconvolution

The transfer function of the lattice filter is

determined by the reflection coefficients. In turn, the

values of these reflection coefficients are uniquely

determined by the prediction error filter transfer function

A (z), or equivalently by the autocorrelation sequence R(k),
M

k = 0,1,. ...M [Ref. 7:p. 829]. Similarly, equations (2.70)

and (2.71b) indicate that the transfer -functions from the

input y(n) to the outputs e (n) and r (n) are A (z) and
M M M

B (z), respectively. Therefore, the analysis lattice filter
M

is equivalent to the whitening filter A (z); that is, it is
M

the inverse of the system model H(z) = 1/A (z). This is the
M
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basis for using the lattice filter in a deconvolution

application.

In order to recover the input signal x(n) from the

system's output signal y(n), it is necessary to determine

the inverse of the system transfer function H(z). The

initial step is to conduct an "identification experiment" to

estimate the system's parameters (either the autoregressive

filter coefficients or the lattice filter reflection

coefficients). To accurately estimate the parameters, the

chosen experimental input signal must be sufficiently rich

in frequency content, or more formally, persistently

exciting so that it excites all the modes of the system. A

sequence is said to be persistently exciting of order n if

its (n x n) autocorrelation matrix is nonsingular [Ref.

13:pp. 70-71], By using the techniques presented in section

D.3 of this chapter, the resulting output sequence y(n) can

be processed to yield the desired reflection coefficients.

When the analysis lattice filter is implemented with these

coefficients embedded in its structure, the lattice becomes

the inverse of A (z) = 1/H(z). This procedure is depicted
M

in Figure 2.10.

The application of linear lattice filters to decon-

volution was simulated using the FORTRAN programs LININV,

ATOCOR, LEVIN, AND LATICE. These programs are provided in

Appendix A. The simulation was conducted for a second
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order, autoregressive , LTI system defined by the equation

y(n) = x(n) - (0.6y(n-l) + 0.08y(n-2)) . As previously

mentioned, modeling the system was the first step in the

deconvolution process. In order to identify the "unknown"

parameters, the system was excited by a zero mean, unity

variance, Gaussian white noise sequence. The output

sequence y(n) was processed by subroutine ATOCOR to

calculate the components of the autocorrelation matrix R

yy
Then subroutine LEVIN implemented Levinson's algorithm to

evaluate both the prediction error filter coefficients

and the associated reflection coefficients from the autocor-

relation matrix. The actual output of subroutine LEVIN is

the lower triangular L matrix described in equation (2.72);

the i-th row of L contains the i-th order prediction error

filter coefficients listed in reverse order, and the first

column contains the negative of the reflection coefficients.

Once the reflection coefficients corresponding to 1/H(z)

were calculated, they were embedded in subroutine LATICE

which implemented the analysis lattice filter equations

(2.76). With the inverse filter of H(z) now available

(i.e., the analysis lattice filter), H(z) was driven by an

"unknown" signal x(n). The output of H(z) was then fed into

the lattice filter. An approximation to x(n) was recovered

at the forward error output signal from the last stage of

the lattice.
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Simulations were run both with and without the

presence of measurement noise. Table 2.1 displays the

resulting L matrices for one simulation. The case of no

measurement noise is shown in Figures 2.11 through 2.14.

Figure 2.11 is a plot of the input signal x(n), Figure 2.12

depicts the system output y(n), and Figure 2.13 shows the

A
lattice filter output x(n). As can be seen, the results of

the inverse filtering were excellent--the x and x curves are

identical. This is verified by Figure 2.14 which shows that

the mean-square error between x(n) and x(n) is nearly zero.

The running average mean-square error was calculated using

the equation

n 2

MSE(n) =
~\J

(1/n) £ (x(i) - x(i)) . (2.97)

The simulation was then repeated for a nonzero

measurement noise. Here, the added measurement noise was a

zero mean, 0.0025 variance, Gaussian white noise sequence.

Using the same input as for the previous case, the outputs

of the system and lattice filter are shown in Figures 2.15

and 2.16, respectively. Figure 2.17 is a plot of the mean-

square error between x(n) and x(n). The results in Table 2.1

show that even with the presence of measurement noise, the

system parameters were still accurately identified. The

lattice filter recovered the basic shape of x(n), however,

it could not remove the additive measurement noise.
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Therefore, the output of the lattice filter is a noisy

or "fuzzy" version of x(n). Additional filtering is required

A
to remove the noise component of x(n). The results

presented here are representative of those obtained for

simulations involving other stable, autoregressive , LTI

systems

.
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TABLE 2 .

1

RESULTS OF MODELING A LINEAR SYSTEM

Modeling Problem :

-1 -2
System: H(z) = 1/[1 + 0.6z + .08z ]

System input: Gaussian white noise, N(0,1)

Number of white noise realizations used: 25

Number of points per realization: 5,000

Modeling Results :

a. No Measurement Noise

L =

1

0.555
0.077

1.0
.598 1

Order, P Ep Kp_

1

2

1.445
0.999
0.993

-0.555
-0.077

b. Measurement Noise is N(0, 0.0025)

L =

1

0.555
0.077

1.0
.598 1

Order l£ l£ Kp

1

2

1 .449
1 .002
0.996

-0.555
-0.077

70



www.manaraa.com

oo* t sro os*o sz'o oco s<ro- os'o- sz*o- oo*x-

(N)X

Figure 2.11 System Input, x(n)
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Figure 2.12 System Output, y(n)
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Figure 2.13 Lattice Filter Output, x(n)
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Figure 2.15 System Output Plus Measurement Noise

75



www.manaraa.com

i' :

:S i

i ~r~ ~r~ ~r~ i

*-' r~ ~\ r~ —

r

SZ'l 00*1 SZ'O 03'0 SS'O OO'O SS'O- 0S"0- SZ'O- OO'I-SS"!-

(N)IUHX

Figure 2.16 Lattice Filter Output, x(n)

76



www.manaraa.com

T ! ! j ! ! j

80'0 ZO'O 90'0 SO'O >0'0 £0*0 20*0 OO'O 00"0

ooo

oo

CO
LJ
_J
D_

LJ

i—

i

oo
LT>

(N)3SW

Figure 2.17 Mean-Square Error Between x(n) and x(n)

77



www.manaraa.com

III. NONLINEAR DECONVQLUTION

A. INTRODUCTION TO NONLINEAR SYSTEMS

While the previous chapter dealt solely with linear
l

r

systems or plants, this chapter will address the inverse

,'f
filtering problem involving nonlinear systems. The chapter

'i starts with a brief introduction to modeling nonlinear
jii;

systems. Then it quickly proceeds to extend the generalized

linear lattice filter results of section II. D. 4 to a

nonlinear analysis lattice filter. The nonlinear lattice

filter is discussed in detail. To conclude, results from

numerous simulations involving the lattice in deconvolution

applications are presented.

System linearity is defined in terms of the principle of

superposition. If the rule by which the system transforms

the input x(k) into the output y(k) is represented by the

operator T, then the system is said to be linear if and only

if

T[ax (k) +bx (k)] = aT[x (k)] +bT[x (k)] (3.1)12 1 2

= ay (k) + by (k)
1 2

for arbitrary constants a and b. The system is nonlinear

if equation (3.1) is not satisfied. Estimation of the

parameters of a nonlinear system is a complex problem.
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One approach to the parameter estimation problem for

nonlinear filters is the Bayesian approach. This approach

leads to various approximate solutions for the parameter

estimates. In the Bayesian approach, the parameters are

considered to be random variables. The parameter vector h

is considered a random vector with a probability density

function p(h). Introducing the observation vector y_(t) and

the input vector x(t), both of which contain data up to

time t, the a posteriori probability density function for h

is p( h |y_( t ) ,x( t ) ) . One possible choice for the estimate of

A
the h vector is to select the conditional mean h ( t ) =

E[h | y_( t ) j_x( t ) ] . Selecting this as the estimate minimizes the

variance of the parameter estimation error. Another
A

possible choice is to select the h(t) which maximizes

p( h
| y_( t ) ,x( t ) ) . This most likely value is known as the

maximum a posteriori (MAP) estimate. Finally, the Bayesian

approach also leads to the extended Kalman filter for

nonlinear state estimation problems. [Ref. 13:pp. 32-41]

Another popular method for modeling nonlinear systems is

based on the Volterra series. The series is named after the

mathematician Vito VOLTERRA. The first person to apply the

series to nonlinear systems was Norbert WIENER. If the

"black box" approach is taken towards a nonlinear, time-

invariant system, the relationship between the input x(t)

and the output y(t) can be represented by the Volterra

79



www.manaraa.com

series

:

oo

h (T )x(t-T )dT

rtja

= h

oo
h (T ,T )x(t-T )x(t-T )dT dT

,_co 2 1 2 1 2 12
•oo

h (T ,T ,T )x(t-T )x(t-T )x(t-T )dT dT dT
,_oo 3 12 3 1 2 3 12 3

+ / . . ./ h (T+/ .../ h (T ,...,T )x(t-T )...x(t,T )dT . . . dT

-co '-co J n 1 n 1 n

+ . . . (3.2)

where n = 1,2,... and h(T ,...,T )=0 for any T < 0,
n 1 n j

j = l,2,...,n . The functions h (T ,...,T ) are called
n 1 n

Volterra kernels of the system. This equation is a

functional series. That is, it performs an operation on the

function x(t) which results in a number for y(t). If the

n-th order Volterra operator, H , is introduced where
n

y (t) = H [x(t)] (3.3)
n n

rco roo
=j . . J h (T ,...,T )x(t-T )...x(t-T ) dT ...dT ,J_/nl n 1 nl n
-co -'-oo

then the series can be expressed in operator notation as

y(t) = H [x(t)] + H [x(t)] + ... + H [x(t)] +... (3.4)
1 2 n
00 CO

= £ h [x(tn = £ y <t) .

n= 1 n n= 1 n
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Figure 3.1 is a graphic representaion of this equation.

[Ref. 14:pp. 7-9] The H operator is a linear operator,
1

H is a quadratic operator; and, in general, the H operator
2 n

involves the term x(t) to the n-th power.

B. GENERALIZED NONLINEAR LATTICE FILTER

1

.

Introduction

In this section, it will be demonstrated how the

generalized lattice filter introduced in section II. D. 4 can

be applied to modeling nonlinear systems. The development

will start by looking at the discrete form of the Volterra

series. Based upon this series an alternate tensor notation

representation will be introduced. The results of section

II. D. 4 will then be extended to handle a two-dimensional

field of data which will result in the generalized nonlinear

lattice filter.

2

.

Nonlinear Lattice Filter Development

The discrete form of the Volterra series of equation

(3.2) is given by

y(k) = h + h (n )x(k-n ) (3.5)
11 1

+ h (n ,n )x(k-n )x(k-n ) + ...

2 12 1 2

Using LENK's tensor notation, an equivalent form of equation

(3.5) is given by
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Figure 3.1 Volterra Series Representation

82



www.manaraa.com

y(k) = H + H x +H xx + ... , where (3.6a)

X'
T

x \k) = tx(k) ,x(k-l ) , . . . ,x(k-A;) x(k-N)] (3.6b)

for A*, = 0,1,..., N. As an example, if N=l and equation

(3.6a) is truncated to the three terms shown above, then

this equation can be rewritten as

y(k) = H + H x(k) + H x(k-l) + H x(k)x(k)
1 00

+H x(k)x(k-l) + H x(k-l)x(k)
01 10

+ H x(k-l)x(k-l ) . (3.7

)

11

Based on this tensor notation, LENK introduced an alternate

representation for the nonlinear system. Instead of

defining the components of the vector x (k) as the present

and past values of the signal x(k) as in equation (3.6b),

the components are redefined in terms of x(k) raised to the

Jy power for A; = 0,1,2,...,N. That is

v. 12 NT
x(k) = [x (k),x (k),x (k),...,x (k)] (3.8)

2 NT
= [ 1 ,x(k) ,x (k) , . . . ,x (k)]

for ^*, = 0,1,2, ... ,N. Now the output of the nonlinear system

is defined by

y(k) = x (k)...x (k-N)H ... (3.9)
Ao Ah
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for ^ , A, , . . . = 0,1,2,.. .,P. The variable P gives the order

of the filter and N defines the filter's finite memory. The

term H v . . ... plays a role similar to that of the Volterra
Ao Ah

kernel; it can be considered a (P+l)-order tensor. To

clarifly the meaning of this notation, the following example

with N=l and P=2 is provided:

y(k) = H. ,k °(k)x '(k-1)
.

*o A i 2

= H +H x(k)+H x(k-l)+H x(k)x(k-l)+H x (k)
00 10 01 11 20

2 2 2

+ H x (k-l)+H x (k)x(k-l)+H x(k)x (k-1)
02 21 12

'!! 2 2

j>
' + H x (k)x (k-1 ) . (3. 10)

'm 22

[Ref. 12:pp. 39-48]

The above nonlinear model for y(k) is a moving

average (MA) model: the output is defined in terms of the

input signal. The next step is to establish an

autoregressive ( AR ) model where y(k) is estimated in terms

of its past values. This type of model is useful when the

input signal is not readily available. An autoregressive

model is obtained by redefining the observation vector in

terms of y(k) vice x(k). Then the AR model is given by

y(k) = y (k-D . . -y
N
(k-N)H . . .. (3.11)

A, An

for A\ = 1,2, ...,P. If the system is driven by a white

noise signal u(k), and if the system's parameters are
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approximated by H ^ ... , then the estimation error is
Ao A,>i

e(k)=y(k)-y(k)=[y (k-1 ) . .
. y 1 k-N )H ... + u(k)]

Ai AN

-
[ y \k-l)...y "k-NJH* . . .A ] (3.12)

Ai ^n

If the system parameters are known exactly, then the estima-

tion error and the white noise sequences are equal--that is

e(k)=u(k). One note concerning the nonlinear AR model:

unlike the linear AR model whose stability is easily

determined (i.e., the system is stable if all its poles lie

within the unit circle in the complex z-plane), it is

difficult to judge for which class of inputs the AR

nonlinear system's output will remain bounded. This is

because the order of the nonlinearity increases with time.

[Ref. 12:pp. 68-69]

Using this alternate tensor form of the AR nonlinear

system, along with the generalized lattice of section

II. D. 4, the nonlinear lattice filter will be developed. To

simplify the discussion, the filter's finite memory will be

restricted to N = 2. Then the product Y(k) = [y '( k-1 ) y \ k-2 ) ]

forA
v ,A^ =0,1,..., P forms a second order tensor, or a two-

dimensional data field given by:
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1

III

Y(k) =

y(k-2) . . . y (k-2)

y(k-l) y(k-l)y(k-2) ... y(k-l)y (k-2)

2 2 2 P

y (k-1) y (k-l)y(k-2). . . y (k-l)y (k-2)

P P P P
y (k-1) y (k-l)y(k-2) . . . y (k-l)y (k-2)

(3.13)

J

:

:/c

ig

The types of systems that this nonlinear lattice

structure can model exactly are of the form shown in Figure

3.2 . The nonlinear combinations block forms a weighted sum

of the cross-products and powers of the input variables

y(k-i), for i=l,2,...,N. As an example, with N=2 and P=2 the

general equation for the system's output when excited by the

input x(k) is given by:

y(k) = x(k) - { H + H y(k-l) + H y(k-2)
11 21 12

2 2

+ H y(k-l)y(k-2) + H y (k-1) + H y (k-l)y(k-2)
22 31 32

2 2

+ H y (k-2) + H y(k-l)y (k-2)
13 23

2 2

+ H y (k-l)y (k-2) } (3. 14)
33

It is also assumed that the system is time-invariant;

otherwise the model changes with time k. In order to define
2

the forward and backward prediction errors, the (P+l)

elements of the two-dimensional data field must by converted
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Figure 3.2 Nonlinear System Model
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i

!|i!

into a one-dimensional sequence. The ordering chosen by

LENK is listed below:

order = {( P, P ),( P-l , P ),( P, P-l ),...,( , P) , (P, )

,

(P-1,P-1) , (P-2,P-1), (P-l,P-2), . . . , (0,P-1),

(P-1,0), . . .,(1,1), (0,1), (1,0), (0,0)} , (3.15)

where the components of the data field are identified by the

indices (m,n) for m,n = 0,1,..., P. The elements of the
2

ordered set are numbered consecutively from to (P+l) -1.

The notation (m,n)-q is used to identify the q-th element

prior to the element (m,n) as referenced to the ordered

sequence. This notation will be further abbreviated to

mn-q. Now the (q-l)-order, normalized, forward error

associated with predicting the value of the element
m n

y (k-l)y (k-2) from the preceding (q-1) elements is given by

_q-i q-i A, Az
e = a (m,n)y (k-l)y (k-2) (3.16)
mn A» Ax

q-1
for Ai ,Ai =0 , 1 , 2 , . . . , P . Note that the coefficients a -> -> can

A,

A

t

be thought of as the components of a second order tensor.
q-1

The coefficient a. -v is equal to zero when the indices
A»Ajl

{X[ »^2,) do not correspond to the (q-1) elements preceding

(m,n) in the ordered sequence (i.e.j when ( A|»Aa ) > (m,n)

or when (A V
,A^.) <. mn-q ). Also, when ( A, »A^ ) = (m,n), then

q-1 q-1
a (m,n) = 1 / | | e | | . (3.17)
mn mn
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Similarly, the normalized backward prediction error in

estimating y(mn-q) from the next (q-1) points is given by

Jl" 1 q- 1 A, Xi
r = b (mn-q)y (k-l)y <k-2)
mn-q AjAa.

(3.18)

q-1
for A| , Ax =0 » 1 » 2 , . . . ,P. The coefficients b. , (mn-q) equal

AiAa.

zero when the indices (Aj,X^) do not correspond to the (q-1)

elements following (m,n) (that is, when (A^A^) < (mn-q) or

( A,. A^) > (m,n) ). When (Ai>A^) = (m,n), then

q-1
b (mn-q) =

mn-q

q-1
1/ Mr ||

mn-q
(3.19)

[Ref. 12:pp. 145-146]

Using the normalized nonlinear Levinson algorithm,

LENK shows that the nonlinear prediction errors can be

updated in order through the recursion relation

mn

.q

mn-q

mn
0<K

>

q

q-i

mn

q-1

mn-q

(3.20)

where

mn
0<* >

=

q / mn 2

(K )v^
mn

-K

- K
mn

q

1

(3.21)
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''A

and the unique reflection coefficients are given by

mn q-1 q-1
K = E{e r } (3.22)

q mn mn-q

[Ref. 12:pp. 146-147]

A deficiency remains to be corrected: the goal is

to estimate y(k), but there is no y(k) term in the two-

dimensional data matrix of equation (3.13). This problem is

solved by adding another channel to the lattice structure

and by exploiting the orthogonality of the backward pre-

diction errors. Since the backward prediction errors leaving

the top row of the lattice filter (Figure 2.9) are uncor-

related, they can be used in a Fourier series to estimate

y(k). These backward prediction errors can be formed into a
2

length L = (P+l) vector defined as

X 12 L-l T
[F ] = [r ,r ,r , . . . , r ] (3.23)
(m,n)-/ 00 00-1 00-2 00-L+1

where the subscript is in the form mn-q. Now, the error in

estimating y(k) using the data in the Y(k) tensor is

calculated from

L L-l
e = y(k) - V K y ,

(3.24)
k A'=0 A

where the Fourier coefficients, K / , are given by
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-1 L-l
[K,] = [E{y(k)r },E{y(k)r- } , . . . ,E{y(k ) r }].(3.25)
A 00 00-1 00-L+1

The resulting generalized nonlinear analysis lattice

structure is depicted in Figure 3.3. [Ref. 12:pp. 147-150]

The nonlinear lattice structure will now be examined

more closely. As can be seen in Figure 3.3 , the inputs to

the analysis filter are the normalized values of y(k) and
2

the (P+l) +1 ordered components of the two-dimensional data

field (equation (3.13)). The ordering of these inputs is in

accordance with equation (3.15). At a given time k, these
2

(P+l) +2 inputs are evaluated and inserted into the left

side of the lattice structure. The lattice calculations are

conducted by starting at the top row and moving downward

along the northwest-southeast diagonal, and then advancing

to the top of the next diagonal and so on. When all the

lattice calculations for time k have been completed, the

process is repeated for time k+1. Just as in the case of

the linear lattice filter, the PARCOR coefficients at each

lattice section act to decorrelate the two input signals.

The backward error signals exit at the top of the lattice

structure, and the forward error signals exit at the right

side. The output of interest for inverse filtering is the

forward error signal from the top row of the filter (i.e.,

the row corresponding to the y(k) input signal). This is

the error arising from the estimation of y(k).
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Figure 3.3 Quadratic Nonlinear Lattice Filter
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3 . The Nonlinear Lattice Applied to Deconvolution

The generalized nonlinear lattice filter can be

applied to the inverse filtering problem just as the linear

lattice filter was in section II. D. 6. The first problem is

one of system identification and parameter estimation. Once

the model parameters have been estimated, they are embedded

in the nonlinear filter lattice structure. Then, the

nonlinear lattice represents the inverse of the system's

transfer function. As will be shown, the nonlinear lattice

filter can model both linear and nonlinear systems-- the

linear system is just a special case of the nonlinear

system. This inverse filtering algorithm was implemented by

the FORTRAN programs NLMAIN, NLCLAT, SCHUR, NORMS, NLLAT

,

and URAND . These programs are listed in Appendix B. Now,

this inverse filtering procedure will be described in more

detail

.

In order to identify the model parameters (i.e., the

PARCOR coefficients), the system was excited with zero mean,

unit variance white noise sequences. Both Guassian and

uniform noise distributions were used with good results.

One difficulty encountered in generating the nonlinear data

was ensuring that the output of the postulated nonlinear

system remained bounded for the input noise signal. For the

simulations, the filter and system were constrained to a

finite memory of at most two delays (N=2), while the
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nonlinear order was allowed to vary from P=0'to P=4. (For N

greater than two, the problem of ordering the elements of

the N-dimensional Y tensor increases in complexity.) The

system output sequence y(k) was then processed by

subroutines NLCLAT and SCHUR, which determined the

corresponding autocorrelation matrix and the partial

correlation coefficients, respectively. In an effort to

improve the accuracy of these calculations, noise sequences

of up to 5,000 points were used. Additionally, the PARCOR

coefficients were averaged over as many as 50 realizations

of the input noise random process. Through trial and error,

it was found that the best inverse filtering results were

obtained when the resulting reflection coefficients were

truncated to two decimal places. The output of subroutine
2 2

SCHUR is a ( ( P+ 1 ) +1 x (P+l) +1) upper triangular matrix of

reflection coefficients. This matrix is simply overlaid

atop the upper triangular shaped nonlinear lattice structure

to place the reflection coefficients at the correct filter

sections

.

With the reflection coefficients calculated and

embedded in the filter, we were able to use the lattice in

an inverse filtering application. To recover the input

signal x(k), the system's output signal y(k) was processed

by subroutines NORMS and NLLAT. The function of NORMS was
2

to normalize the (P+l) +1 input signals into the lattice.
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Then subroutine NLLAT , using the previously calculated

reflection coefficients, implemented the lattice structure

and carried out the lattice filter calculations. The forward

error signal out of the top row of the lattice yielded the

normalized estimate of x(k). Since the inputs to the lat-

tice filter are all normalized, the outputs must be

denormalized . Therefore, since the input into the top row of

the lattice is divided by the norm of y(k), the forward

error signal from the top row of the lattice is multiplied

by the norm of y(k). (Note that if y(k) is a zero mean

sequence, then this norm is equivalent to its standard

deviation.) Also, it was found that to achieve a good

estimate, it was necessary to further scale this error

signal by dividing it by the norm of the noise generated

sequence y ( k )

.

In order to verify the accuracy of the reflection

coefficients, the noise generated output signal, y(k), was

passed through the inverse lattice filter to see how well

the filter whitened this sequence. The effectiveness of the

whitening filter was evaluated by examining the mean-square

error ( MSE ) between the white noise input signal, x(k), and

A
the lattice filter's output, x(k). The running average

mean-square error was calculated using the equation

k a 2

MSE(k) ="V/(l/k)
Y.

(x(i) - x(i)) . (3.26)
i = l
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Since the noise input, x(k), has unit variance, the MSE

plot essentially provides a percentage error between x(k)

and x(k). Plots of the MSE are included in the

simulation results. Having demonstrated that the lattice

filter represented a good inverse of the system H(z), the

system was then driven by a known input signal x(k). To

recover an approximation to this signal, the corresponding

system output was passed through the lattice filter, and the

resulting lattice filter output was denormalized and

rescaled as previously discussed. Simulation results for

various systems are presented in the following section.

4 . Inverse Filtering Simulation Results

In this section, the previous modeling and inverse

filtering procedures are implemented and applied to various

linear and nonlinear systems. Unless otherwise noted, the

reflection coefficients for each of the systems were

determined by using twenty-five realizations (5,000 points

each ) of the zero mean, unit variance white noise random

process as the input excitation signal. As previously

mentioned, the mean-square error between this white noise

input and the lattice filter's output was plotted to

evaluate the lattice filter's inverse filtering performance.

After the system was modeled, it was driven by the signal

x(k) which consisted of ramps, pulses, and sinusoids as

shown in Figure 3.4.
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Figure 3.4 Input Signal x(k)
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a. System I: y(k) = x(k) - (0.6y(k-l) +0.08y(k-2))

This is the linear system first introduced in

Section II. D. 6. An input Gaussian white noise sequence was

used to model the system. Figure 3.5 is a plot of the

running average mean-square error between the input noise

and output error signals. In Section II. D. 6, the linear

lattice filter's reflection coefficients were found to be

K = -0.555 and K = -0.077. It should be noted that these
1 2

values appear in the first row of the nonlinear lattice's

reflection coefficient matrix. Here, for a first order,

nonlinear lattice filter, the reflection coefficients are

given by the upper triangular matrix

K =

-.55 -.07
-.43

-.55

The system output, y(k), corresponding to the input signal

of Figure 3.4 is shown in Figure 3.6. As can be seen by the

plots of x(k) and x(k) in Figure 3.7, the nonlinear lattice

filter did an outstanding job of recovering the "unknown"

input signal x(k) from the linear system's output y(k).

b. System II: y(k) = x(k) - ( . 2y ( k-1 ) y (k-2 )

)

This system involves a "cross-talk"

nonlinearity , that is, the output is a function of the

product of two different signals. For this system, both
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Figure 3.5 System I Mean-Square Error
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Figure 3.6 System I Output y(k)
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Figure 3.7 System I Comparison of x(k) and x(k)
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Gaussian and uniform noise distributions were used in the

modeling process in order to compare the two techniques.

Here, both methods yielded the same reflection coefficients:

K =

-.21

The only difference between the two techniques was the value

of the scaling factor (i.e., the norm of the noise generated

system output y(k)). The plot of y(k) is shown in Figure

3.8. The running average mean-square error and x(k) plots

for the Gaussian noise derived model are depicted in Figures

3.9 and 3.10, respectively. The corresponding plots for the

uniform noise derived model are given in Figures 3.11 and

3.12. As can be seen by comparing the plots, both modeling

variations lead to nearly identical results. Both

techniques yielded excellent approximations to the input

signal x ( k ) .

c. System III: y(k) = x(k) - . 2y (k-1 ) y ( k-1

)

This system involves a quadratic nonlinearity

.

Therefore, a second order model was used. The system output

would not remain bounded for a Gaussian noise input, so the

system was modeled using a unit variance uniform noise

random process. The resulting reflection coefficients are:
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Figure 3.8 System II Output y(k)

103



www.manaraa.com

ooo
LO

Oo
in

ooo

oo
LO
CO

o
§ en

oo
LO
cm

en
en

LJ

O I—

i

00

oo
LO

ooo

oo
LO

SZIO'O OStO'O SSIO'O OOIO'O SZOO'O

ON3SW
OSOO'O SSOO-00000'0

Figure 3.9 System II Mean-Square Error
(Gaussian Noise Model)

104



www.manaraa.com

^
,—

>

E-<^ en
'—

'

31X X

i 1 1 1 r

S3" I 00*1 SZ*0 OS'O SS'O 00*0 S2"0- OS'O- SZ'O- OO'I-SS'I

Figure 3.10 System II Comparison of x(k) and x(k)
(Gaussian Noise Model)

105



www.manaraa.com

ooo
LO

Oo
LT>
T1

'*i

Ooo

oo

o
§ 01
ro LJ

_J
Q_

LJ

o "—

i

oo
in

C-

I

—

O'Z

01*

0"9 o*s 0'* 0*£ 0"2 0*1

ooo

oo
LT)

0*0

Figure 3.11 System II Mean-Square Error
(Uniform Noise Model)

106



www.manaraa.com

^
, s E-«^ en
<—

'

XX X

i 1 r^ i
1

1 r

SS'I OO'I SZ'O OS'O SS'O OO'O SS'O- OS'O- SZ"0- OO'I-SS'I-

OIJIUHX'ODX

Figure 3.12 System II Comparison of x(k) and x(k
(Uniform Noise Model)

107



www.manaraa.com

K =

-.20 .08 -.04 -.18
-.20 -.18 .69 .54 . 17 .34 -.42

.12 -.22 -.39 -.04 .01 .64 .31
-.38 -.09 -.37 .60 -.15 .32

.27 .15 -.67 -.25 -. 13
.57 -. 17 -.37 .49

-.36 -.37 .50
.51 -.38

-.81

Figure 3.13 provides the running average mean-square error

plot. The output y(k) of the nonlinear system is shown in

Figure 3.14. Figure 3.15 depicts the comparison between the

system input x(k) and the lattice filter output x(k). The

x(k) curve has the same shape as x(k), however, it is

slightly offset. In an attempt to improve the approximation

process, the number of realizations of the noise random

process used to model the system was doubled from twenty-

five to fifty and the simulation was repeated. Although

several reflection coefficient values changed by .01, there

was no perceptible improvement in the estimation of x(k).

d. System IV: y(k)=x(k) -
( . 5+0 . 6y ( k-1 ) + . 08y ( k-2 )

)

This example consists of the linear System I

modified by the addidtion of a constant bias term. Gaussian

noise was used to model the system. The reflection

coefficients determined for the first order model are:
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Figure 3.14 System III Output y(k)
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K =

-.23 -.55 -.07
-.23 -.40 -.43

-.46 .01

This is basically the same matrix as obtained for System I,

but modified by the addition of several terms which attempt

to model the constant offset. (Note the reappearance of the

values of -.55 and -.07 in the top row of the lattice

matrix.) The running average mean-square error is shown in

Figure 3.16. The system output y(k) is plotted in Figure

3.17. Figure 3.18 is a plot of the lattice output x(k)

and the system input x(k). The x(k) curve is an excellent

replica of the original input signal, but it is offset by a

constant value. Although the small mean-square error evident

in Figure 3.16 indicates that the lattice is a good inverse

filter, the lattice was unable to completely remove the bias

term. Increasing the order of the model (i.e., overmodeling

the system) did not improve the results.

e. System V: y(k)=x(k) -
( 5 . 0+0 . 6y ( k-1 ) + . 08y ( k-2 )

)

In order to further investigate the constant

offset nonlinearity , the example of System IV was repeated

using a bias of 5.0 instead of 0.5. Again, Guassian white

noise was used in determining the model's parameters. The

reflection coefficients of the first order nonlinear lattice

are given by:
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Figure 3.18 System IV Comparison of x(k) and x(k)
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K =

-.92 -.55 -.07
-.92 -.86 -.74

.7-8 -.75
-.90

Again, the reflection coefficient values of -.55 and -.07

occur in the top row of the matrix as these elements

apparently model the linear portion of the sytem. The

running average mean-square error is displayed in Figure

3.19, and the output of the nonlinear system is shown in

Figure 3.20. Figure 3.21 provides the comparison between the

system input and the output of the inverse filter. As with

System IV, the x(k) curve produced by the deconvolution

process has the same shape as x(k), but is offset from the

desired curve by a small constant value. Here, the system

bias is 5.0, and the x(k) and x(k) curves differ by about

0.5. This is a relative improvement over the results

obtained for System IV. System IV had a constant bias of

only 0.5 but the x(k) curve was offset from the x(k) curve

by approximately 0.4.
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IV. CONCLUSION

In this thesis, several linear least-squares

deconvolution , or inverse filtering, techniques were

reviewed. Particular emphasis was placed on the lattice

filter. It was shown that when a system is defined by an

autoregressive , linear time-invariant model, this model can

be transformed into an equivalent lattice filter

representation. Furthermore, the resulting analysis lattice

filter acts as a whitening filter, and is the inverse of the

system's autoregressive transfer function. An example

demonstrated the effectiveness of the lattice filter in a

linear deconvolution application. Unfortunately, the linear

lattice filter is unable to model nonlinear systems and,

therefore, is not a viable nonlinear inverse filtering

technique

.

The discussion of the linear lattice filter led to the

development of the generalized lattice filter, which in turn

led to the derivation of the nonlinear lattice filter.

The goal of this thesis was to implement the nonlinear

lattice filter, and then apply it to the linear and

nonlinear deconvolution problem. This was accomplished with

generally very good results. It was shown that the

nonlinear lattice filter was suitable for modeling
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discrete autoregressive systems where the output y(n)

consisted of a weighted sum of the cross-products of

P q
the terms y (n-1) and y (n-2), where the powers p and q can

take on the values {0,1,2,3,4}. Examples were presented

demonstrating the ability of the nonlinear lattice filter to

effectively act as an inverse filter for both linear and

nonlinear autoregressive systems.
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APPENDIX A

LINEAR LATTICE FILTER FORTRAN PROGRAMS

p ******************************************************************
C * *

C * LT SCOT L JOHNSON *

C * LINEAR INVERSE *

C * 06 APRIL 1986
C
C

* *
******************************************************************

THE PURPOSE OF THIS PROGRAM IS TO MODEL A LINEAR AUTOREGRESSIVE
C SYSTEM BY THE EQUIVALENT ANALYSIS LATTICE FILTER.
C THE SYSTEM'S TRANSFER FUNCTION IS GIVEN BY H(Z) = 1/A(Z)
C WHERE A(Z) = (Z**2 + A1*Z + A2)/Z**2.
C THE LATTICE FILTER REFLECTION COEFFICIENTS ARE DETERMINED
C BY DRIVING H(Z) WITH ZERO MEAN, UNITY VARIANCE GAUSSIAN WHITE
C NOISE. THE OUTPUT IS PROCESSED BY SUBROUTINE ATOCOR WHICH COMPUTES
C THE COMPONENTS OF THE SAMPLED AUTOCORRELATION MATRIX R. SUBROUTINE
C LEVIN IMPLEMENTS THE LEVINSON ALGORITHM AND EVALUATES THE LATTICE
C FILTER COEFFICIENTS FROM THE AUTOCORRELATION MATRIX. FINALLY,
C SUBROUTINE LATICE IMPLEMENTS THE ANALYSIS STRUCTURE OF THE
C LATTICE FILTER WHICH IS EQUIVALENT TO THE INVERSE FILTER H(Z).
C NOW WHEN H(Z) IS DRIVEN BY AN UNKNOWN SIGNAL XfN], THE
C SYSTEM OUTPUT Y(N) CAN BE FED INTO THE PREVIOUSLY DETERMINED
C LATTICE FILTER; SINCE THE LATTICE FILTER IS THE INVERSE OF H(Z)
C THE LATTICE FILTER OUTPUT SHOULD BE A GOOD ESTIMATE OF X(N).
C
C ***VARIABLE DEFINITIONS****
C Al. A2 = COEFFICIENTS OF THE PREDICTION ERROR POLYNOMIAL A(Z]
C DSEED,DSEED1 = SEED VALUES USED BY THE IMSL WHITE GAUSSIAN NOISE
C GENERATOR FUNCTION GGNQG
C E = VECTOR OF MEAN-SQUARED PREDICTION ERRORS E(0) ,E(1) ,. . . E(ORDER)
C ESUM = VECTOR USED IN DETERMINING AVERAGE E
C GAMMA = VECTOR OF LATTICE REFLECTION COEFFICIENTS. GAMMA(I) IS
C THE REFLECTION COEFFICIENT OF THE I'TH LATTICE STAGE.
C GAMSUM = VECTOR USED IN DETERMING AVERAGE GAMMA
C GRAFP = REAL VALUE WHICH DEFINES LENGTH OF X-AXIS FOR PLOTTING
C L = LOWER-TRIANGULAR MATRIX WHOSE ROWS ARE THE REVERSE OF ALL THE
C PREDICTION ERROR FILTERS FROM ORDER ZERO TO THE HIGHEST ORDER
C LSUM = MATRIX USED IN DETERMINING THE AVERAGE L MATRIX
C MSE = MEAN-SQUARE ERROR BETWEEN X(N) AND XHAT(N)
C MSEMAX = MAXIMUM VALUE OF MSE
C MSESUM = RUNNING SUM USED IN CALCULATING MSE
C NINDEX = ARRAY OF REAL NUMBERS USED IN DISSPLA PLOTTING ROUTINES
C NOISE = ARRAY OF MEASUREMENT NOISE ADDED TO OUTPUT OF H(Z)
C NUMPTS = NUMBER OF POINTS IN INPUT NOISE SEQUENCE
C ORDER = ORDER OF THE LATTICE FILTER
C ORDERP = ORDER + 1

C PLTPTS = NUMBER OF POINTS USED IN PLOTTING ROUTINES
C R = VECTOR OF AUTOCORRELATION LAGS R(0),R(1} .. . . R(ORDER)
C RMAX = MAXIMUM MAGNITUDE OF ELEMENTS OF Rl l6 BE USED IN PLOTTING
C STDDEV = STANDARD DEVIATION OF THE MEASUREMENT NOISE
C TRIAL = NUMBER OF REALIZATIONS OF THE WHITE GAUSSIAN NOISE RANDOM
C PROCESS USED IN MODELING THE SYSTEM H(Z)
C X = INPUT SEQUENCE INTO THE SYSTEM H(Z)
C XMAX, XMIN = RANGE OF X VALUES USED IN DISSPLA PLOTTING ROUTINES
C XHAT = ESTIMATE OF X- OUTPUT OF THE ANALYSIS LATTICE FILTER A(Z)
C Y = OUTPUT SEQUENCE OF H(Z)
C YMAX, YMIN = RANGE OF Y VALUES USED IN DISSPLA PLOTTING ROUTINES
C
C ***VARIABLE DECLARATIONS****

INTEGER I, N,K, NUMPTS, ORDER, ORDERP, PLTPTS, TRIAL
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X( 5000). Y( 5000), Al.A2.XMIN,XMAX,YMAX.YMIN,NINDEXf5(
GAMMA( i6),GAMS0M( l6) . ft( 10) L( 10 10) A E( 10) ,RMAX ,GRAf
XHATL5000) f LSUMClO,ld)lESOfl(10) NOiSE(5006;,ST6DEV
MSE(5000)>1SESUM,M$EPLt

REALM X( 5000). Y( 5000), Al.A2.XMIN,XMAX,YMAX.YMIN,NINDEXf 5000)
REALM GAMMA(i6),GAMSU^l6),^10)!LC10!l0),E(10)!RMAX J GBAFP

REALM
REAL*8 DSEED^DSEEbl'

C
C
C DEFINE THE LENGTH OF THE TIME SEQUENCES

NUMPTS = 5000
PLTPTS = 2000
GRAFP = FLOAT(PLTPTS+l)

C DEFINE THE ORDER OF THE LATTICE FILTER AND THE A(Z) COEFFICIENTS
ORDER=2
ORDERPORDER+1
Al = 0.6
A2 = 0.08

C INITIALIZE VARIABLES
DO 6 I=l,ORDERP

GAMMAU) = 0.

GAMSUM(l) = (

ESUM(I) = 0.

RCI) = 0.

DO 4 K=l,ORDERP
LSUM(I.K) = 0.

4 CONTINUE
6 CONTINUE
C

XMAX = 0.

YMAX = 0.

MSESUM = 0.

MSEMAX = 0.

C DEFINE THE SEEDS FOR THE NOISE SIGNALS, THE NUMBER OF NOISE
C REALIZATIONS USED IN MODELING H(Z), AND THE STANDARD DEVIATION OF
C THE MEASUREMENT NOISE

DSEED = 1243073. 5D0
DSEED1 = 724389. 4D0
TRIAL = 25
STDDEV = 0.05

C
DO 25 I=1,TRIAL

DSEEd = DSEED/DFLOAT(I)
DSEED1 = DSEED1/DFL0AT(I)
DO 10 K=l, NUMPTS

X(K) = GGNQF(DSEED)
10 CONTINUE

DO 11 K=l. NUMPTS
NOIS£(K) = STDDEV * GGNQF(DSEEDl)

11 CONTINUE

Y(l) = X(l) + NOISE(l)
, x

Y(2) = X 2) - A1*Y(1) + NOISE(2)
DO 12 K = 3, NUMPTS

Y(K) = X(K) - (A1*Y(K-1) + A2*Y(K-2)) + NOISE(K)
12 CONTINUE

C DETERMINE THE AUTOCORRELATION VECTOR OF THE SEQUENCE Y(N)
CALL ATOCOR(NUMPTS,Y, ORDER, R.RMAX)

C DETERMINE THE L MATRIX AND E VECTOR
CALL LEVIN(ORDER,R,L,E)
DO 18 K=l. ORDER

GAMMACK)=-1*L(K+1.1)
GAMSUM(K) = GAMSUM(K) + GAMMA(K)

18 CONTINUE
C

DO 22 N=1.0RDERP
ESUMfN) = ESUM(N) + E(N)
DO 20 K=l,ORDERP /M lllll( ,

LSUM(N,K) = LSUM(N,K) + L(N,K)
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20 CONTINUE
22 CONTINUE
25 CONTINUE
C
C CALCULATE THE AVERAGE VALUES OF E, L, AND GAMMA

DO 28 N=l,ORDERP
E(N) = ESUM(N)/FLOAT(TRIAL)
DO 26 K=l,ORDERP

L(N,K) = LSUM(N,K)/FLOAT(TRIAL)
26 CONTINUE
28 CONTINUE

DO 30 K=l. ORDER
GAMMX(K) = GAMSUM(K)/FLOAT(TRIAL)

30 CONTINUE
C
C WITH INPUT Y AND LATTICE PARAMETERS GAMMA 4 DETERMINE THE
C OUTPUT OF THE ANALYSIS MODEL LATTICE FILTER
C CALL LATICE(NUMPTS, ORDER, GAMMA, Y,XHAT)

C PRINT RESULTS
C
C PRINT THE R.E, AND GAMMA VECTORS

WRITE(8,35)
35 FORMATm, 1

!
1 ,T4,'N" ,T10,'R(N)' ,T20,'E(N)' ,T30, 'GAMMA(N)

)

NULL=D
WRITE(8,40) NULL.R(l).EjflJ

40 FORMATCTl .
'

'
. T4 . f 2 ,Tld , 3F10. 4)

DO 45 K=2,ORDERP
N=K-1
WRITE(8,40) N,R(K),E(K),GAMMA(N)

45 CONTINUE
C
C PRINT THE L(I,J) MATRIX

WRITE(8V 48)
48 FORMATCTl/l'.'LCl, J )=')

DO 55 I=l,ORDERP
WRltEi8,50) (L(I,J),J=1.0RDERP)

50 F0RMAT(tl, r0^I0CFi0.4,4XJ)
55 CONTINUE
C
C
C DO THE DECONVOLUTION PROBLEM. FIRST DEFINE THE DETERMINISTIC
C INPUT X(N), THEN DETERMINE THE SYSTEM OUTPUT.

DO 85 K=1,PLTPTS
X(K) = 1.0 * SIN(0. 0126*FLOAT(K))

85 CONTINUE
C

Y(l) = X(l) + NOISE(l)
Yf2] = Xf2) - A1*Y(1) + NOISE(2)
DO $0 K=3,PLTPTS

Y(K) = X(K) - (A1*Y(K-1) + A2*Y(K-2)) + NOISE(K)
90 CONTINUE
C
C INPUT Y(N) INTO THE LATTICE TO RECOVER THE ESTIMATE OF X(N)

CALL LAT1CE(PLTPTS, ORDER, GAMMA, Y,XHAT)

C CALCULATE THE MEAN-SQUARE ERROR (MSE) BETWEEN X(N) AND XHAT(N)
DO 93 K=1,PLTPTS

MSE$UM = fX[K)-XHAT(K))*(X(K)-XHAT(K)) + MSESUM
MSE(K) = SQRTfMSESUM/FLOATCK))
IF(MSE(K).GT. MSEMAX) MSEMAX = MSE(K)

93 CONTINUE
C
C DEFINE PLOTTING PARAMETERS

DO 95 K= l.PLTPTS
NINDEX(K) = FLOAT(K-l)
IF(ABS(X(K)).GT. XMAX) XMAX = ABS(X(K))
IF(ABS(XHAT(K)).GT. XMAX) XMAX = ABS(XHAT(K))
IF(ABS(Y(K)).GT. YMAX) YMAX = ABS(Y(K))
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95 CONTINUE
XMIN = -1.0 * XMAX
YMIN = -1.0 * YMAX

C
C **** DISSPLA PLOTTING ROUTINES ****

C
C PLOT THE SYSTEM INPUT AND THE LATTICE OUTPUT
C CALL TEK618

CALL COMPRS
CALL RESETpALL')
CALL PAGE(8. 0,6. 5)
CALL XINTAX
CALL AREA2D(6. 75,5.0)
CALL XNAMEpTIME SAMPLES$' ,100)
CALL YNAME('X(N)$ r

,100)
CALL CROSS
CALL GRAFf 0. ,500. ,GRAFP, XMIN, 'SCALE' ,XMAX)
CALL CURVEfNlNDEX X.PLTPTS.O)
CALL ENDPL(O) .

C
C PLOT THE SYSTEM OUTPUT Y(N)

CALL NOBRDR
CALL AREA2D(6. 75,5.0)
CALL XNAMEpTIME SAMPLES$' ,100)
CALL YNAMEf 'Y(N)$',100)

2)
C CALL HEADINfYCN) = X(N) - (0. 6*Y(N-l)+0. 08*YCN-2)1$' .100.1. 5.11

CALL HEADIN('Y(N)=X(N)-[0.6*YrN-l)+0.08',(Y(N-2))+N6lSE$ ,

,!L00,1.5,
CALL HEADIN( ' NOISE = N(5,0. 0025)$\ 100, 1.5, 2)
CALI CROSS
CALL GRAFfo. ,500. ,GRAFP A YMIN, 'SCALE' ,YMAX)
CALL CURVEC NlNDEX I Y , PLT^TS , 0)
CALL ENDPL(O)

C
C PLOT LATTICE FILTER OUTPUT, XHAT(N)

CALL AREA2D(6. 75,5.0)
CALL XNAMEpTIME SAMPLES* ' ,100)
CALL YNAME('XHAT(N)$', 100)
CALL CROSS
CALL GRAF(0. ,500. .GRAFP. XMIN. "SCALE 1 ,XMAX)
CALL CURVEfNlNDEX XHAT,PLTPT$,0)
CALL ENDPL(O)

C
C PLOT THE MEAN-SQUARE ERROR BETWEEN X(N) AND XHAT(N)

CALL AREA2D(6. 75,5.0)
CALL XNAMEPTIME SAMPLES?', 100)
CALL YNAMEp MSE( N)$', 100)
CALI CROSS

C CALL GRAF(0. ,500. , GRAFP .0. ,' SCALE' .MSEMAX)
CALL GRAFfO! ,500! ,GRAFP,o! . SCALE^ ,0. 08)
CALL CURVE(NlNDEX,MSE,PLTPtS,0)
CALL ENDPL(O)
CALL DONEPL

C
STOP
END

C
C

C
C SUBROUTINE ATOCOR
C
C GIVEN A TIME SEQUENCE Y(N), THIS PROGRAM CALCULATES THE SAMPLED
C AUTOCORRELATION MATRIX TERMS R(0) ,R(1) ,. . . ,R(ORDER).

C WRITTEN 06 APRIL 1986
Cp********************* ********************************************** A***

SUBROUTINE ATOCOR(NUMPTS,Y, ORDER, R.RMAX)
C VARIABLE DEFINITIONS:
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C Y(5000)= INPUT SEQUENCE
C Rf 10) = AUTOCORRELATION MATRIX
C NUMPTS = NUMBER OF POINTS IN THE SEQUENCE Y(N)
C ORDER = MAXIMUM LAG FOR WHICH R IS EVALUATED
C ORDERP = 0RDER+1:THE LENGTH OF THE R VECTOR
C SUM= RUNNING TOTAL OF PRODUCTS FOR A GIVEN LAG
C RMAX= MAXIMUM VALUE OF R; USED FOR DISSPLA PLOTING
C

INTEGER NUMPTS, I ,J,K,N, ORDER, ORDERP
\R(i6XREAL Y(5000),R(lO),SUM,RMAX

RMAX=0.
0RDERP=0RDER+1
DO 75 K=l, ORDERP

SUM=0.
N=NUMPTS-K+1
DO 70 J=1,N

SUM=SUM+(Y(K+J-1)*Y(J))
70 CONTINUE

R(K)=SUM/NUMPTS
IF(ABS(R(K)). GT. RMAX) RMAX=ABS(R(K))

75 CONTINUE
C

RETURN
END

C
C
p***** *********************************************** *******************
C
C SUBROUTINE LEVIN
C
C THIS SUBROUTINE IMPLEMENTS LEVINSON'S ALGORITHM. IT GENERATES ALL
C THE PREDICTION ERROR FILTERS UP TO A GIVEN ORDER, FROM THE
C AUTOCORRELATION LAGS.
C
C BASED ON A PROGRAM WRITTEN BY S.J. ORFANIDIS (REF. 1: P. 333)
C
C MODIFIED 06 APRIL 1985
Cp************* ******************************************* ***************

SUBROUTINE LEVIN(ORDER,R,L,E)
C ***VARIABLE DEFINITIONS'**'**
C
C ORDER = ORDER OF LATTICE FILTER
C R = VECTOR OF AUTOCORRELATION LAGS Rf 0) Ml) .. .

.
,R(ORDER)

C L = UNIT LOWER-TRIANGULAR MATRIX. ITS i-TH ftOW HOLDS THE I-TH
C PREDICTION-ERROR FILTER IN REVERSE ORDER. ITS FIRST COLUMN
C HOLDS THE NEGATIVES OF THE REFLECTION COEFFICIENTS,
C GAMMA(I) = -L(I+1,1) FOR 1=1,2.. .. .ORDER
C E = VECTOR OF PREDICTION ERRORS E( 0) ,E(i],. . . ,E(ORDER)
C THE MATRIX L AND THE DIAGONAL MATRIX D FORMED BY THE E'S DEFINE
C A UL CHOLESKY FACTORIZATION OF THE INVERSE OF THE AUTOCORRELATION
C MATRIX: R INVERSE = L TRANSPOSE * D INVERSE * L
C
C ***VARIABLE DECLARATIONS****

REAL R(10),E(10),L(10 A 10) AGAP,GAMMA
INTEGER rlPLUS.lMlNUS, J, dRDEA, ORDERP
orderp=or6er+i

c set the upper triangle of the l matrix to zero
DO 60 1=1, ORDER

IPLUS=I+1
IMINUS=I-1
DO 60 J=IPLUS.ORDERP

L(I,J)=0\
60 CONTINUE
C

L(l,l)=l.
L(2 2)=1.0
L(2 1]=-R(2)/R(1)
E Cl)=R(l)
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GAP=0.
IMINUS=I-1
DO 63 K=1,IMINUS

GAP=GAP+R(K+1)*L(I-1,K)
63 CONTINUE

GAMMA=GAP/E(I-1)
L(I,1)=-1*GAMMA
DO 64 K=2,IMINUS

L(I K)=L(I-1,K-1)-GAMMA*L(I-1,I-K)
64 CONTINUE

L(1. 11=1.0
1)*(1-GAMMA**2)

68 CONTINUE

RETURN
END

r> *********************************************************** ************

c
C SUBROUTINE LATICE
C
C THIS PROGRAM IMPLEMENTS A SINGLE CHANNEL LATTICE STRUCTURE.
C WHEN GIVEN THE' LATTICE COEFFICIENTS AND THE INPUT SEQUENCE,
C THE PROGRAM DETERMINES THE OUTPUT SEQUENCE.

C WRITTEN 06 APRIL 1986
Cp***********************************************************************

c
SUBROUTINE LATICEfNUMPTS, ORDER, GAMMA, Y, OUTPUT)

C ***VARIABLE DEFINITIONS** 5**

C NUMPTS= NUMBER OF POINTS IN THE SEQUENCES; MAX IS 5000
C ORDER= ORDER OF THE LATTICE- MAX IS 9
C GAMMAfORDER)= LATTICE COEFFlCENT ARRAY
C F = FORWARD ERROR
C B = BACKWARD ERROR
C DELAY(ORDER)= ARRAY OF DELAYED BACKWARD ERROR SIGNALS
C TEMP(ORDER) = ARRAY WHICH TEMPORARILY HOLDS THE BACKWARD ERROR
C Y(NUMPTS)=INPUT DATA ARRAY
C O0TPUT(NUMPTS)=ARRAY OF LATTICE OUTPUT DATA

C ***VARIABLE DECLARATIONS****
INTEGER NUMPTS, ORDER, I.K.M , ,

REAL GAMMAflO) F,B,DELAY(10),TEMP(10),Y(5000),OUTPUT(5000)
C INITIALIZE ARRAYS

DO 80 1=1 .ORDER
DELAy(I)=0.
TEMP(I)=0.

80 CONTINUE
C
C DO TIME ITERATION

DO 88 K=l, NUMPTS
f=y£io

c for~each time instant, recursively increase the lattice order
DO 85 M=l, ORDER

TEMlVM)=B
B=DELAY(M)-(GAMMA(M)*F)
F=F:tGAMMA(M)*DELAY(M)

)

DELAY(M)=TEMP(M)
85 CONTINUE

OUTPUT(K)=F
88 CONTINUE

RETURN
END
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c

APPENDIX B

NONLINEAR LATTICE FILTER FORTRAN PROGRAMS

*********************************************************************
*

C PROGRAM NLMAIN *

C
C THIS PROGRAM DEFINES THE SYSTEM PARAMETERS AND THE SYSTEM'S *

C INPUTS AND OUTPUTS. IT CALLS SUBROUTINES TO DETERMINE THE *

C THE CORRESPONDING NONLINEAR ANALYSIS LATTICE MODEL. *
C *

C WRITTEN 30 APRIL 1986
C *
p************ ***************************************************** ******
C
C THIS PROGRAM INPUTS A WHITE NOISE SEQUENCE X(K) INTO A AUTOREGRES-
C SIVE^ NONLINEAR SYSTEM H(Z) . THE SYSTEM Y

S OUTPUT, Y(K),IS
C PROCESSED TO DETERMINE THE AUTOCORRELATION MATRIX AND THE NONLINEA
C LATTICE'S REFLECTION COEFFICIENT MATRIX. SINCE THE OUTPUT OF THE
C LATTICE IS WHITE NOISE, THE LATTICE IS EQUIVALENT TO THE INVERSE
C OF THE SYSTEM.
C
C *** VARIABLE DECLARATIONS****
C DSEED = SEED USED BY THE IMSL WHITE GAUSSIAN NOISE FUNCTION GGNQF
C GRAFP = MAX X-AXIS VALUE FOR X AND Y GRAPHS
C GRAFN = MAX X-AXIS VALUE FOR MSE GRAPH
C H = ARRAY OF AUTOREGRESSIVE PARAMETERS THAT DEFINE THE SYSTEM
C IY = SEED USED BY THE UNIFORM WHITE NOISE FUNCTION URAND
C MN = N * N
C MNP1 = MN + 1; NUMBER OF ROWS IN THE NONLINEAR LATTICE
C MSE = MEAN SQUARE ERROR BETWEEN THE INPUT NOISE SIGNAL AND THE
C FORWARD ERROR SIGNAL FROM THE TOP ROW OF THE LATTICE
C MSESUM = RUNNING TOTAL USED IN CALCULATION MSE
C MSEMAX = MAXIMAUM VALUE OF MSE FOR USE IN PLOTTING
C MSEPLT = REAL*4 VALUES OF MSE USED IN DISSPLA PLOTTING
C NORM = ARRAY OF FACTORS THAT NORMALIZE THE LATTICE INPUTS
C N = DIMENSION OF THE SQUARE Y TENSOR MATRIX
C NUMPTS = NUMBER OF POINTS USED IN CALCULATING THE RHO MATRICES
C NINDEX = TIME INDEX ARRAY USED IN DISSPLA PLOTS
C PLTPTS = NUMBER OF DATA POINTS USED IN DISSPLA PLOTS
C RANGE = +/- RANGE OF UNIFORM WHITE NOISE
C RHO = ARRAY OF REFLECTION COEFFICIENTS
C RHOSUM = ARRAY USED IN CALCULATING THE AVERAGE RHO MATRIX
C SCALE = RECIPROCAL OF THE NORM OF THE SYSTEM OUTPUT FOR WHEN
C THE SYSTEM IS EXCITED BY WHITE NOISE
C STDDEV = STANDARD DEVIATION OF GUASSIAN WHITE NOISE
C TRIAL = NUMBER OF NOISE REALIZATIONS USED IN CALCULATING AVG RHO
C X = INPUT INTO SYSTEM H(Z)
C XHAT = LATTICE OUTPUT THAT APPROXIMATES X
C XHPLOT = ARRAY OF REAL*4 VALUES OF XHAT USED IN DISSPLA PLOTS
C XMAX.XMIN = RANGE OF X AND XHPLOT VALUES USED IN DISSPLA PLOTS
C Y = 6UTPUT OF HCZ)
C YPLOT = ARRAY OF REAL*4 VALUES OF Y USED IN DISSPLA PLOTS
C YMAX,YMIN = RANGE OF YPLOT VALUES USED IN DISSPLA PLOTS
C YSUM = RUNNING TOTAL USED IN CALCULATING THE SYSTEM OUTPUT
C
C ***VARIABLE DECLARATIONS****

INTEGER TRIAL, NUMPTS, PLTPTS, IY.IM1.JM1
REAL*4 X(5000 j, MSEMAX, RANGE! STDDEV 'YMAX.YMIN.XMAX.XMIN.GRAFN
REAL*4 XHPLOT(^OOO) ^iNDEX^OOOhM^EPLTtBOOOl^YPLdTrBOOO) , GRAFP
PEAL*8 Y(5000) A R( 26! 26) A RHQSUM(26, 26), XHAT( 5000], NORM(26). MSESUM
REAL*8 RHO(26,^6),M^E(5600),DSEED,ALPHA(26,26),BETA(26,26),H(5,5)
REAL*8 SCALE, YSUM •
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c
C SET THE NUMBER OF WHITE NOISE REALIZATIONS USED TO CALCULATE
C THE AVERAGE RHO MATRIX

TRIAL = 25
C
C DEFINE MODEL PARAMETERS
C

N = 2
MN = N *

MNP1 = MN + 1

C DEFINE H(Z) COEFFICIENTS
C THE AR PARAMETERS H(2,l)=0.6 AND H(l,2)=. 08 CORRESPOND TO
C GAMMA(2)=-. 55 AND GAMMA(3)=-.08

DO 7 1=1, N
v '

DO 6 J=1,N
H(1,J) = 0.

6 CONTINUE
7 CONTINUE
C H(l.l) =0.5

H{2,1) = 0.6
C H(tJ) = 0.2

Hn,2) = 0.08
C H(2,^) = 0.2
C H(2 3) = 0.5
C H(3,l) = 0.2
C
C INITIALIZE MSESUM, MSEMAX AND RHOSUM MATRIX

DO 2 I=1,MNP1
DO 1 J=1 AMNP1

RHOSUM(I,J) = 0.

1 CONTINUE
2 CONTINUE

MSESUM = 0.

MSEMAX = 0.

XMAX = 0.

YMAX = 0.

C DEFINE SEED VALUES A SATURATION LIMIT X RANGE OF UNIFORM NOISE.,
C STD DEV OF GAUSS NOISE, AND NUMBER OF POINTS IN TIME SEQUENCES

IY = 1354
DSEED = 1243073. 5D0
SAT = 0. 7
RANGE = 1.73205
STDDEV =1.0
NUMPTS = 5000
PLTPTS = 5000
GRAFN = FLOATf NUMPTS + 1)
GRAFP = FLOAT ( PLTPTS + 1)

C
C WRITE HEADER FOR UNIFORM NOISE INPUT

WRITE(8.4) RANGE
4 FORMATCTf /INPUT WHITE UNIFORM NOISE HAS ZERO MEAN AND RANGE OF

*+/- >F6.3)
WRITEt8.5V TRIAL, NUMPTS. I

Y

5 FORMATfTI/RHO IS AVERAGED OVER ',13,' TRIALS OF ',15,' POINTS.
* INITIAL SEED= r ,I6)

C
C WRITE HEADER FOR GUASSIAN NOISE INPUT
C WRITE(8+4) STDDEV
C4 FORMAT(tl,' INPUT WHITE GAUSS NOISE HAS ZERO MEAN AND STD DEV OF 1

C *F6.3)
C WRITE(8^5) TRIAL A NUMPTS.DSEED
C5 FORMAT(tl,'RHO 1$ AVERAGED OVER ',13,' TRIALS OF ',15,' POINTS.
C * INITIAL SEED= t

,F10. 1)
C
C PRINT H MATRIX

WRITE(8,8)
8 FORMATCTf/Y(K)=X(K)-(TENSOR PRODUCT H*Y) WHERE H(I,J) = ')

DO 10 1=1,

N

WRITE(8,9) (H(I,J),J=1,N)
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9 F0RMAT(T10,5(F6.3,4X))
10 CONTINUE
C
p ****************************************************************
C RUN TRIALS FOR DIFFERENT SEED VALUES TO GET AVERAGE RHO MATRIX
p ******************************

DO 50 L=l, TRIAL
DSEED = DSEED/DFLOAT(L)
IY = IY/L

C SELECT EITHER A GUASSIAN OR UNIFORM INPUT NOISE SEQUENCE
DO 11 K=1.NUMPTS

C THE INPUT NOISE IS UNIFORM ON (-RANGE, RANGE) WITH
C MEAN = AND VARIANCE =((2*RANGE)**2)/12)

X(K) = 2.0 * (URAND(IY7 - .51 * RANGE
C THE INPUT NOISE IS GAUSSIAN, MEAN=0 AND VARIANCE=STDDEV**2
C X(K) = GGNQF(DSEED) * STDDEV
11 CONTINUE
C

Y(l) = DBLE(X(1)) - H(l.l)

D0
2
l5

=
K23

L
N0Mpfr

" ( (
'

]
+ H(2

' 1}
*Y(1) + H(3,1)*Y(1)*Y(1))

YSUM = 0.

DO 14 1=1,

N

DO 13 J=1,N
IM1 = 1-1
JM1 = J-l
YSUM=H(I,J)*C00RD(Y(K-1),IM1)*C00RD(Y(K-2),JM1)+YSUM

13 CONTINUE
14 CONTINUE

Y(K) = DBLE(X(K)) - YSUM
15 CONTINUE
C
C ***CALL SUBROUTINES****
C DETERMINE AUTOCORRELATION MATRIX FOR Y SEQUENCE

CALL NLCLAT(Y.NUMPTS.R.N)
C DETERMINE REFLECTION FACTORS FROM AUTOCORRELATION MATRIX

CALL SCHURC RHO, R, ALPHA, BETA, MNP1)
C ADD TOGETHER TH£ R^HO MATRICES^ FROM EACH TRIAL

DO 45 I=1,MNP1
DO 40 J=1.MNP1

RHO$UM(I,J) = RHO(I,J) + RHOSUM(I,J)
40 CONTINUE
45 CONTINUE
50 CONTINUE
C CALCULATE AVERAGE RHO MATRIX AND TRUNCATE TO TWO DECIMALS

DO 54 I=1,MNP1
DO 53 J=1,MNP1

RHO(l.J) = RHOSUM(I,J)/DFLOAT(TRIAL)
RHO(I J) = DINT(RHO(I,J)*100. )/100.

53 CONTINUE
54 CONTINUE
C

55 FORMAT l LJ) =')
WRITE(8V 55)

^f
,

' RHO(I ..

DO 60^1 = l.MNPl
WRITEC8,58)CRH0(I,J),J=1,MNP1)

58 F0RMAT(T1,10F6.2)
60 CONTINUE
C
C
C *** NORMALIZE THE LATTICE INPUT SIGNALS AND PASS THE ***

C NOISE GENERATED DATA THROUGH THE LATTICE FILTER.
CALL NORMS(Y,N,NUMPTS,NORM)
SCALE = 1.0/NORM(1)
CALL NLLAT( Y , RHO , N , NUMPTS , NORM , XHAT)

C ***EXAMINE THE WHITENING EFFECT OF THE LATTICE FILTER BY *****

C CALCULATING THE MEAN-SQARE ERROR BETWEEN THE INPUT WHITE
C NOISE AND THE FORWARD ERROR SIGNAL OUTPUT FROM THE TOP
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c

ROW OF THE LATTICE.
DO 63 K=1,NUMPTS

MSESUNf = fDBLEfXfK))-XHAT(K))*(DBLE(X(K))-XHAT(K)) + MSESUM
MSEfK) =DSQRTfMSESUM/DFLOAT(K))
MSEPLTfKl = SNGLfMSEfK))
IFQISEPLT(K).GT.WSEMAX) MSEMAX = MSEPLT(K)

63 CONTINUE
C
C NOW THAT THE INVERSE FILTER HAS BEEN EVALUATED, DO THE
C DECONVOLUTION PROBLEM. FIRST, DEFINE THE "UNKNOWN" INPUT
C SEQUENCE X(K) AND THEN GENERATE THE SYSTEM OUTPUT Y(K).

DO 85 K=1,PLTPTS
IF(K. LE. 250) XfK) = FLOAT(K)/250.
IFfK. LE. 750. AND. K. GT. 250] XfK) = 2. - FLOATf K)/250.
IFfK. LE. 1250. AND. K. GT. 750) XfK) = FLOAT(K1/250. -4.0
IFfK. LE. 1750. AND. K. GT. 1250) XfK) = 1.0- FLOATf K-1250)/250.
IFfK. LE. 2000. AND. K. GT. 1750) XfK) = FLOAT(K-1750)/250. - 1.0
IFCK. LE. 2400. AND. K. GT. 2000) XfK) = 0.5

• IFI K. LE
IF IK. LE

85 CONTINUl
C

IFfK. LE. 2700. AND. K.GT. 2400). XfK) = -0.5
IFfK. LE. 2900. AND. K.GT. 2700) XfK) = 0.5
IFfK. LE. 3000. AND. K.GT. 2900) XfK) = -0.5

3500. AND. K. GT. 3000)XfK)= 0. 7*SIN(0. 0126*FLOAT( K-3001))
5000. AND. K.GT. 3500)X(K)= 0. 9*SIN(0. 0021*FLOAT( K-3501)

)

Yfl) = DBLE(Xfl)) - Hf 1.1)
Yf2) = DBLEfXf2J) - (H(i,i) + H(2,1)*Y(1) + H(3,1)*Y(1)*Y(1))
DO 90 K=3,PLTPT$

YSUM = 0.

DO 89 1=1 .N
DO 38 J=1,N

IM1 = 1-1
JM1 = J-l
YSUM=H(I,J)*C00RD(Y(K-1),IM1)*C00RD(Y(K-2),JM1)+YSUM

88 CONTINUE
89 CONTINUE

Y(K) = DBLE(X(K)) - YSUM
90 CONTINUE
C

C NOW PASS THE SYSTEM OUTPUT DATA THROUGH THE LATTICE FILTER
C EMBEDDED WITH THE PREVIOUSLY CALCULATED REFLECTION FACTORS
C RHOfI J). THE FORWARD ERROR SIGNAL OUT OF THE TOP ROW OF THE
C LATTICE IS XHATfKK AND SHOULD APPROXIMATE THE DESIRED SIGNAL
C X(J<) AFTER IT IS RENORMALIZED AND SCALED.

CALL NORMS(Y,N,PLTPTS,NORM)
CALL NLLATfY'RHO,N,PLtPTS,NORM,XHAT)
DO 98 K=l.PLtPTS

v

XHATfKf) = SCALE * f XHAT(K)*NORM(l))
XHPLOT(K) = SNGLfXHAT(K))
YPLOTfK) = SNGL(YfK))

/ / SN
IF(ABS(XfK)].GT.XMAX) XMAX = ABS(XfK))

t x

IFfABS(XHPLOTfK)).GT.XMAX) XMAX = ABSfXHPLOTf K)
IFf.ABS(YPLOT(K)).GT. YMAX) YMAX = ABS(YPLOT(K))

98 CONTINUE
XMIN = -1.0 * XMAX
YMIN = -1.0 * YMAX
DO 99 K=l,5000

NINDEtf(K) = FLOAT(K-l)
99 CONTINUE
C
C **** DISSPLA PLOTTING ROUTINES ****

C
C PLOT SYSTEM INPUT AND LATTICE OUTPUT
C CALL TEK618

CALL COMPRS
CALL RESETf 'ALL')
CALL PAGE(8. 0,6.5)
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I

i'l'''.'

;

CALL XINTAX
CALL AREA2D(6. 75,5.0]
CALL XNAMEpTIME SAMPLES! 1

,100)
CALL YNAMEfX(K) XHAT(K)$' 100)

CALL YNAME(/X(K)$\100)
CALL CROSS
CALL GRAFfO. ,500. ,GRAFP,XMIN, *SCALE' ,XMAX)
CALL LINESP (2. 0)
CALL LINES( 'X(Ki$' ,IPAK A 1)
CALL LINES(. I XHAT(K)$' ,1PM, 2)
CALL LEGLIN
CALL DOT
CALL CURVE(NINDEX,X,PLTPTS,0)
CALL RESETf'DOT 1

)
CALL CURVE(NINDEX,XHPLOT A PLTPTS,0)
CALL LEGEND (IPAK,2,5. 0,6. 5)
CALL ENDPL(O)

C
C PLOT Y

AREA2D(6. 75,5.0)
XNAMEPTIME SAMPI

. YNAME('Y(K)$ r
,10C v

CALL HEADINC'YCK) = X(K) - 0. 2*Y(K-1)**2$' ,100,1. 5.1)
CALL HEADIN(7(K) = X(K)-(0. 6*Y[ K-1>0.T)8^Y(KL2))V' 100.1. 5,1)

CALL HEADIN( hY(K)=X(K)-(0. I*Y(K-1)+ 0. 5*Y(K-1)*Y(K-2J**2 }$'

,

CALL .

CALL XNAMEf'TIME SAMPLES$' ,100)
CALL YNAME('Y(K)$ r

,100j

C
C *100. 1.5,1)

CALL CROSS
CALL GRAF(0. ,500. ,GRAFP,YMIN' SCALE' ,YMAX)
CALL CURVECNjNDEX YPLOT PLTPtS.O)
CALL ENDPL(O)

' «» C

*ti C PLOT MSE
CALL AREA2D(6. 75,5.0)
CALL XNAME( V TIME SAMPLES?' ,100)

,;:: CALL YNAMEf'MSEfK)! 1

.100]
CALL GRAFtD. ,500. ,SrAfN,0. , 'SCALE' ,MSEMAX)
CALL CURVEfNlNDEX MSEPLt,NUMPTS,0)
CALL ENDPL(O)
CALL DONEPL

C
STOP
END

p************* ************************* *********************************

C
C SUBROUTINE SCHUR
C
C CALCULATES THE REFLECTION FACTORS FROM THE CORRELATION MATRIX
C
C WRITTEN 29 APRIL 1985 BY P.J. LENK (REF 12: P. 174)

p***********************************************************************
SUBROUTINE SCHUR(RHO. R, ALPHA, BETA. N)
REAL*8 RHO(26,26),R(26;26),ALPHA(26,26),BETA(26,26),RNORM,T

C INITIALIZE THE ALPHA AND BETA ARRAYS
C

DO 10 I = 1,N
DO 5 J = l.N

ALPHA(I\J) = R(I,J)/DSQRT(R(I,I))
BETA(t.J) = ALPHA(1,J)
RHO(I,J) '= 0.0

5 CONTINUE
C WRITE(8,7](ALPHA(I,J),J=1,N)
C7 F0RMAT(5(2X,E12. 5))

'' *

10 CONTINUE
C
C BEGIN CALCULATING THE REFLECTION FACTORS
C

DO 50 J = 2,N
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NJ1 = N - J + 1

DO 40 I = 1,NJ1
JI1 = J + I - 1

IP1 = I + 1

RH0(I,JI1) = ALPHA(I.JI1)/BETA(IP1,JI1)
RNORM = DSQRT(1.0 - ftHO(I ,JI1)*RH0( I ,JI1))
DO 30 K = I.N

T = ALPHA(I,K)
ALPHAfl.K) = (ALPHA(I,K)-RH0(I,JI1)*BETA(IP1,K))/RN0RM
BETA(I,K) = (BETA(IP1 K)-RHO(I JI1)*T)/RN0RM

30 CONTINUE
40 CONTINUE
C WRITEt8,42)J.((ALPHA(I,K),K<L,N),I=l,N)
C42 FORMAT<72X'l3:4(2X.E12.5)1
C WRITE(8,42)J,((BETA(I,K),K=1,N),I=1,N)
50 CONTINUE
C
C

RETURN
ENDp***********************************************************************

c
C FUNCTION URAND
C
C TAKEN FROM "COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS" BY
C G. E. FORSYTHE, M. A. MALCOLM, AND C. B. MOLER
Cp******** ******************************************** *******************

C
REAL FUNCTION URAND(IY)
INTEGER IA.IC,ITWO.M2,M,MIC
DOUBLE PRECISION HALFM
REAL S
DOUBLE PRECISION DATAN,DSQRT
DATA M2/0/JTWO/2/
IF(M2. NE. 0) GO TO 20

C
C IF FIRST ENTRY, COMPUTE MACHINE INTEGER WORD LENGTH
C

M=l
10 M2=M

M=ITWO*M2
IF(M. GT. M2) GO TO 10
HALFM=M2

C
C COMPUT MULTIPLIER AND INCREMENT FOR LINEAR CONGRUENTIAL METHOD
C

IA=8*IDINT(HALFM*DATAN( 1. D0)/8. D0)+5
IC=2*IDINT(HALFM*(. 5D0-DSQRT(3. D0)/6. D0))+1
MIC=(M2-IC)+M2

C
C S IS THE SCALE FACTOR FOR CONVERTING TO FLOATING POINT
C

S=. 5/HALFM
C
C COMPUTE NEXT RANDOM NUMBER
C

20 IY=IY*IA
C
C THE FOLLOWING STATEMENT IS FOR COMPUTERS WHICH DO NOT ALLOW
C INTEGER OVERFLOW ON ADDITION
C

IF(IY.GT.MIC) IY=(IY-M2)-M2

IY=IY+IC
C
C THE FOLLOWING IS FOR COMPUTERS FOR WHICH THE WORD LENGTH
C FOR ADDITION IS GREATER THAN FOR MULTIPLICATION
C
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IF(IY/2.GT.M2)IY=(IY-M2)-M2

C THE FOLLOWING STATEMENT IS FOR COMPUTERS WHERE INTEGER OVERFLOW
C AFFECTS THE SIGN BIT
C

IF(IY. LT. 0}IY=(IY+M2)+M2
URAND=FLOAT(IY)*S
RETURN
END

p******* ****************************************************************
C
C SUBROUTINE NLCLAT *
C
C THIS SUBROUTINE PRODUCES A CORRELATION MATRIX FROM NONLINEAR *

C TIME SEQUENCE IN AN ORDER WHICH IS COMPATIBLE WITH SUBROUTINE *

C SCHUR. *
C

*

C WRITTEN 7 MAY 1985 BY P.J. LENK (REF 12: P. 181) *

I"' C *
p***********************************************************************

SUBROUTINE NLCLAT (Y.IYS.R.N)
REAL*8 Y(5000),R(26,26),$UM,VEC(26)

C DEFINE CONSTANTS
C

MN = N*N
MNP1 = MN + 1

IYSM2 = IYS - 2
FIYSM2 = FLOAT(IYSM2)

! C
4 C INITIALIZE R MATRIX TO ZERO
:j

c
DO 20 I = 1.MNP1

DO 10 J = 1.MNP1
R(I,J) = 0.0

10 CONTINUE
20 CONTINUE
C
C BEGIN OUTER LOOP
C

DO 80 I = 3, IYS
IR = 1

VEC(IR) = Y(I)
DO 50 MP1 = 1,N

MO = MP1 - 1

LLIM = 2*MP1 - 1

DO 40 L = l.LLIM
LO = L - 1

II = MO
Jl = LO/2
IF (MOD(L0,2).EQ. 0) GO TO 30
II = Jl
Jl = MO

30 IR = IR + 1

VEC(IR) = C00RD(Y(I-1),I1)*C00RD(Y(I-2),J1)
40 CONTINUE
50 CONTINUE
C
C CALCULATE THE CORRELATIONS
C

DO 70 J = 1.MNP1
DO 60 K = J.MNP1

R(J,K) = R(J,K) + VEC(J)*VEC(K)
C WRITE(6'12)VEC(J),VEC(K),R(J,K)
C12 FORMAT(3(2X,E12. 5))
60 CONTINUE
70 CONTINUE
80 CONTINUE
C
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C DIVIDE BY THE NUMBER OF DATA ELEMENTS CONSIDERED

DO 100 J = 1.MNP1
DO 90 K = J,MNP1

R(J,K) = R(J,K)/FIYSM2
90 CONTINUE
100 CONTINUE
C
C FILL IN THE SYMMETRIC HALF OF CORRELATION MATRIX

DO 120 I = 2,MNP1
IM1 =1-1
DO 110 J = 1.IM1

R(I,J) = R(J,I)
110 CONTINUE
120 CONTINUE
C
C

RETURN
END

C
Cr************************* ********************************* *************
C
C FUNCTION COORD
C
C GENERATES OUTPUT OF RANDOM FUNCTION
C CREATED 23 AUG 84 (REF 12: P. 187)
C
r***********************************************************************

DOUBLE PRECISION FUNCTION COORD(XJ)
C USE SIMPLE POWER SERIES TYPE POLYNOMIALS
C

Y = 1.0
IF (LEO. 0) GO TO 30
Y = X**I

30 COORD = DBLE(Y)
RETURN
END

C
Cr************************************ ******* **************************

C
C SUBROUTINE NLLAT
C
C THIS SUBROUTINE IMPLEMENTS THE NONLINEAR LATTICE FILTER USING
C PREVIOUSLY CALCULATED REFLECTION FACTORS.
C
C WRITTEN 30 APRIL 86
Cr***********************************************************************

SUBROUTINE NLLATfY^ RHO, N, NUMPTS, NORM, XHAT)
: **VARIABLE DEFINITIONS*^*C

C
C INFWD(I) = FORWARD ERROR INPUT INTO THE I'TH ROW OF THE LATTICE
C INBKDJn.= BACKWABD.

C
OUTFWD(I)= FORWARD ERROR OUTPUT FROM THE I'TH ROW OF THE LATTICE
OUTBKDCI)= BACKWARD " " "

ll " " '' "

C Y = INPUT DATA VECTOR
C RHO = REFLECTION FACTOR MATRIX
C NORM = VECTOR OF NORMS OF THE LATTICE INPUT TERMS
C XHAT = OUTPUT DATA VECTOR; IT IS THE FORWARD ERROR SIGNAL FROM
C THE LAST STAGE OF THE FIRST ROW
C NUMPTS = NUMBER OF POINTS IN THE INPUT/OUTPUT SEQUENCES
C N = DIMENSION OF SQUARE Y DATA MATRIX
C MNP1 = DIMENSION OF THE RHO, NORM, AND INPUT/OUTPUT ARRAYS
C
C ***VARIABLE DECLARATIONS****

INTEGER N,MN, NUMPTS, LAST, MNP1

135 •



www.manaraa.com

REAL*8 Y(5000).RHO(26,26).NORMf26),XHATf5000),INFWD(26)
REAL*8 INBKD(2^),0UTFWD(26),0UTBKD(26),RN0RM

MN = N * N
MNP1 = MN + 1

C INITIALIZE THE INPUT AND OUTPUT ARRAYS TO ZERO
DO 5 1=1.26

INFWOYl) = 0.

INBKD(I) = 0.

OUTFWD(I) = 0.

OUTBKD(I) = 0.

5 CONTINUE
C
C DETERMINE THE LATTICE INPUTS FOR EACH TIME K.

DO 60 K=1,NUMPTS
C CLEAR INPUTS FOR THIS TIME ITERATION

DO 10 I=1,MNP1
INFWD(I) = 0.

INBKD(I) = 0.

10 CONTINUE
IFCK.EQ. 1) GO TO 15
IF(K. EQ. 2) GO TO 20

C SET LATTICE INPUTS FOR CASE WHEN K>=3
IR = 1

INFWD(IR) = Y(K)/NORM(IR)
DO 13 MP1 = 1,N

MO = MPi - 1

LLIM = 2*MP1 - 1

DO 12 L = l.LLIM
LO = L - 1

II = MO
Jl = LO/2
IF (MOD(L0,2).EQ. 0) GO TO 11
II = Jl
Jl = MO

11 IR = IR + 1

INFWD(IR)=C00RD(Y(K-1),I1)*C00RD(Y(K-2),J1)/N0RM(IR)
12 CONTINUE
13 CONTINUE
C INFWD(l) = Y(K)/N0RM(1)
C INFWDC2) = l./N0RM(2)
C INFWD(3) = Y(K-1)/N0RM(3'
C INFWD(4) = Y(K-2)/N0RM(4'
C INFWD(5) = Y(K-lrY(K-2)/N0RM(
C INFWD(6) = Y(K-lrY(K-l)/NORM(
C INFWD(7) = Y(K-2)*Y(K-2l/N0RMl

.

C INFWD(8) = YfK-l)*Y(K-l1*Y(K-2);N0RM(8)
C INFWD(9] = YCK-l)*Y(.K-2)*Yf K-2)/N0RM(9)
C INFWDC10) = Y(K-i)*Y(K-i)*Y(K-2)*Y(K-2)/NORM(10)

DO 14 J=1,MN
INBKD(J) = INFWD(J+1)

14 CONTINUE
GO TO 25

C
C SET INPUTS FOR K=l CASE
15 INFWD(l) = Y(1)/N0RM(1)

"'1(2)

C

1.

INFWD(2) = 1.7N0RM(
INBKD(l) = INFWD(2)
GO TO 25

C SET INPUTS FOR K=2 CASE
INFWD(l) = Y(2)/N0RM(1)
INFWDC2) = l./NORMm
INFWD(3) = Y(1)/N0RM(3)
INFWD(6) = Ym*Y(l)/N0RM(6)
INFWD(ll) = Y(1)*Y(1)*Y(1}/N0RMC11)
INFWDf 18) = Yfl1*Y(l)*Y(l)*Y(l)/N0R
INBKD(l) = INFWD(2
INBKD(2; = INFWD(3;

Y(1)/N0RM(18)
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INBKD(5) = INFWD(6)
INBKD(IO) = INFWD(ll)
INBKD(17) = INFWD(18)

C IMPLEMENT THE J'TH UPPER DIAGONAL OF THE LATTICE. MOVE ALONG THE
C DIAGONAL BY STARTING AT ROW L=l AND MOVING DOWN TO ROW L=LAST.
25 DO 50 J=1,MN

L/ST = MNP1 - J
IFfj.EO. 1) GO TO 40

C IF NOT ON THE FIRST UPPER DIAGONAL (I.E. J NOT = 1) THEN UPDATE
C THE INPUTS FROM THE OUTPUTS OF THE PREVIOUS DIAGONAL

DO 35 L=1,LAST
INFWD(L) = OUTFWD(L)
INBKD(L) = 0UTBKD(L+1)

35 CONTINUE
C DO THE LATTICE CALCULATIONS
40 DO 45 L=1,LAST

tfNORM = DSQRT(1.0 - RHO(L,J+L)*RHO(L,J+L))
OUTFWD(L) = (INFWD(L) - RHO(L,J+L)*INBKD( L))/RNORM
OUTBKD(L) = (INBKD(L) - RHO(L J+L)*INFWD(L))/RNORM

45 CONTINUE
50 CONTINUE
C REMOVE NORMALIZATION FACTOR FROM THE OUTPUT OF THE TOP ROW

XHAT(K) = OUTFWD(l)
60 CONTINUE

RETURN
END

C
C
C
C
C
r**********************************************************************

c
C SUBROUTINE NORMS
C
C THIS SUBROUTINE CALCULATES THE NORMS OF THE INPUTS
C TO THE NONLINEAR LATTICE.
C
C WRITTEN 30 APRIL 86
C
r ***********************************************************************

SUBROUTINE NORMS(Y,N,NUMPTS,NORM)

C
INTEGER NUMPTS,N AMN,MNP1,I,K,IR,LLIM,L0,M0,MP1,I1,J1,J,L
REAL*8 VEC(26);n6RM(26),Y(£000)
MN = N * N
MNP1 = MN + 1

C INITIALIZE VECTORS TO ZERO
DO 10 K = 1.MNP1

VEC(K) = 0.

NORM(K) = 0.

10 CONTINUE
C
C SINCE TIME INDEX STARTS AT 1=3^ INITIALIZE NORMS OF INPUTS WHICH
C ARE POWERS OF Y(I-l) TO ACCOUNT FOR TIMES 1=1 AND 1=2.

NORM(l) = Y(l) * Y(l) + Y(2) * Y(2)
N0RM(2) = 1.0+1.0
N0RM(3) = Ym * Y(l)
NORM(6) = N0RM(3) * NORM(3)
NORM? 11) = NORM(6) * NORM(3)
N0RM(18) = NORM(6) * NORM(6)

C FOR TIME U FORM A Y DATA VECTOR WHOSE COMPONENTS MATCH THE
C INPUTS TO THE NONLINEAR LATTICE.

DO 80 I = 3,NUMPTS
IR = 1

VEC(IR) = Y(I)
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DO 50 MP1 = 1,N
MO = MPi - 1

LLIM = 2*MP1 - 1

DO 40 L = l.LLIM
LO = L - 1

II = MO
Jl = LO/2
IF (MOD(L0,2).EQ. 0) GO TO 30
II = Jl
Jl = MO

30 IR = IR + 1

VEC(IR) = C00RD(Y(I-1),I1)*C00RD(Y(I-2),J1)
40 CONTINUE
50 CONTINUE
C
C CALCULATE THE NORMS

DO 60 K=1,MNP1
C IF(K. Eb.2) GO TO 60

NORM(K) = NORM(K) + VEC(K)*VEC(K)
60 CONTINUE
80 CONTINUE
C

WRITE(8,83)
83 FORMATCTJ'K 1 J10,'NORM(K)')

DO 85 K=l,MNf>l
NORMCIQ = DSQRT(NORM(K)/DFLOAT(NUMPTS))
WRITECS,86) K,NORM(K)

86 F0RMAT(T1,I3,T8,E12.5)
85 CONTINUE

RETURN
END
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